期刊文献+

Hénon混沌系统的模糊广义预测控制与同步 被引量:2

Fuzzy Generalized Predictive Control and Synchronization of Hénon Chaotic System
原文传递
导出
摘要 针对Hénon混沌系统,本文给出了一种基于T-S模糊模型的混沌系统广义预测控制算法。该方法将模糊辨识和广义预测控制结合起来应用到Hénon混沌系统中。首先,应用T-S模糊模型对Hénon混沌系统进行辨识,模糊聚类法辨识模型的前件参数,递推最小二乘法辨识结论参数。基于辨识模型,采用广义预测控制算法对其进行控制,实现了系统的跟踪与同步。仿真结果表明,与其它算法相比,该算法能够保证系统输出快速、有效地跟踪设定值。 A kind of generalized predictive control algorithm based-on T-S fuzzy model for Henon chaotic system is proposed. This method combines fuzzy identification with generalized predictive control, which is applied to Henon chaotic systems. In the first, we obtain the model of the system by using the T-S fuzzy model to identify the Henon chaotic systems. Antecedent parameters are determined based on the method of fuzzy clustering, and the recursive least squares (RLS) method is used to identify consequent parameters. Then the generalized predictive control is applied to the identification model to control the Henon chaotic system. This method realized tracking and synchronization of Henon chaotic system. Simulation results show that the algorithm proposed in this paper can ensure that the output of the system can follow with the given output quickly and effectively.
出处 《模糊系统与数学》 CSCD 北大核心 2014年第1期138-151,共14页 Fuzzy Systems and Mathematics
基金 河北省自然科学基金资助项目(F2010001320)
关键词 Hénon混沌系统 GPC 模糊系统 模糊预测控制 Henon Chaotic System GPC Fuzzy System Fuzzy Predictive Control
  • 相关文献

参考文献18

  • 1Li Z. Fuzzy Chaotic Systems Modeling[M]. Control and Applications,Springer-Verlag,2006.
  • 2Chen G R, Dong X N. From chaos to order: Methodologies, perspective and applications[M]. Singapore:World Scientific Pub. Co. ,1998.
  • 3Xu M, Chen G R, Tian Y T. Identifying chaotic systems using Wiener and Hammerstein cascade models[J]. Math Comput Model,2001,33(4-5) :483-493.
  • 4Ge Z M, Lee C I. Control, anti control and synchronization of chaos for an autonomous rotational machine system with time-delay[J]. Chaos, Solitons - Fractals, 2005,23 (5) : 1855 - 1864.
  • 5Yeh J P. Identifying chaotic systems using a fuzzy model coupled with a linear plant[J]. Chaos,Solitons and Fractals, 2007,32 (3) :1178-1187.
  • 6Takagi T, Sugeno M. Fuzzy identification of system and its application on modeling and control[J]. IEEE Trans. on Systems, Man and Cybernetics, 1985,15 (1) : 116 - 132.
  • 7Hu C, Jiang H J, Teng Z D. Fuzzy impulsive control and synchronization of general chaotic system[J]. Acta Appl. Math,2010,109(2):463-485.
  • 8Liu Y, Zhao S W. T-S model-based impulsive control for chaotic systems and its application [J]. Mathematics and Computers in Simulation, 2011,81 (11 ) : 2507-2516.
  • 9Zheng Y G, Nian Y B, Wang D J. Controlling fractional order chaotic systems based on Takagi-Sugeno fuzzy model and adaptive adjustment meehanism[J]. Physics Letters A, 2010,375 (2) : 125 - 129.
  • 10Liu X W, Zhong S M. T-S fuzzy model based impulsive control of chaotic systems with exponential decay rate[J]. Physics Letter A, 2007,370 (3 -4) : 260- 264.

二级参考文献18

  • 1陈增强,姜惠敏.基于智能优化算法的T-S模糊模型预测控制仿真研究[J].系统仿真学报,2009,21(S2):79-82. 被引量:3
  • 2Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Trans on System,Man and Cybernitics,1985(15):116-132.
  • 3Tanaka K,Sugeno M.Stability analysis and design of fuzzy control systems[J].Fuzzy Sets and Systems,1992,45(2):135-156.
  • 4Zhang Huaguang,Liu Derong.Fuzzy modeling and fuzzy control[M].Birkhduser Boston,2006.
  • 5Clarke D W,Mohtadi C,Tuffs P S.Generalized predicfive control.Part 1:the basic algorithm;Part 2:extension and interpretations[J].Automatica,1987,23(1):137-160.
  • 6Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 641196
  • 7Pyragas K 1992 Phys. Lett. A 170 421
  • 8Toshimitsu Ushio and Shigeru Yamamoto 1999 Phys. Lett. A 264 30
  • 9Liu F, Ren Y, Shan X M and Qiu Z L 2002 Chaos, Solitons and Fractals 13 723
  • 10苏佰丽,陈增强,袁著祉.多变量非线性系统的有约束模糊预测解耦控制[J].系统工程学报,2007,22(5):546-550. 被引量:9

共引文献18

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部