期刊文献+

拟极小残差法在GPU上的优化研究

QMR Optimization Study on GPU
在线阅读 下载PDF
导出
摘要 随着GPU在高性能计算领域更多地用于科学计算,采用GPU技术对大型稀疏线性方程组进行计算,从而满足人们对计算速度和计算精度要求的提高。NVIDIA Fermi架构的开发,大大提升了GPU的双精度浮点运算能力。拟极小残差法(QMR)作为高性能计算领域中的重要迭代算法,基于求解稀疏代数方程组对ELL算法进行GPU优化。通过对不同规模线性方程组计算分析表明,QMR-GPU的性能提升为原始QMR的3.5倍,与传统的BICG法相比,QMR并行算法具有速度和存储优势,可获得良好的并行加速比。 As the GPU in high-performance computing is more used in scientific computing, GPU technology can be used for 3D electromagnetic problems in the large-scale sparse linear equations. The NVIDIA architecture- Fermi significantly improves floating point computation performance in double-precision. It is a necessity to optimize Minimum residual method (ELL) on GPU, which is an important iterative algorithm in high performance computing area. ELL solution of sparse linear equationson GPU is optimized, and ELL-GPU performance has 3.5X improve- ment compared with implemented on CPU. Analysis of the calculations for linear equation sets of different sizes shows that, with better parallel speedup ratio, QMR parallel algorithm is superior to the traditional BICG method in speed and memory.
出处 《科学技术与工程》 北大核心 2014年第7期219-222,共4页 Science Technology and Engineering
基金 国家自然科学基金(U1262206)资助
关键词 并行计算 拟极小残差法 统一计算设备架构 parallel computing QMR CUDA
  • 相关文献

参考文献4

  • 1张宁宇,高山,赵欣.一种求解机组组合问题的内点半定规划GPU并行算法[J].电力自动化设备,2013,33(7):126-131. 被引量:6
  • 2Chow E, Saad Y. Approximate sparse iterations. SIAM Journal (3) :995-1023 inverse preconditioners via sparse- on Scientific Computing, 1998; 19.
  • 3Helfenstein R, Koko J. Parallel preconditioned conjugate gradient al- gorithm on GPU. Journal of Computational and Applied Mathematics, 2011 ;236( 15 ) :3584-3590.
  • 4Commer M, Newman G A. New advances in three-dimensional con- trolled - sourc electromagnetic inversion. Geophysical Journal Inter- national, 2011 ;172(5) : 513-535.

二级参考文献19

  • 1刘洋,周家启,谢开贵,胡小正,程建翼,曾伟民.预条件处理CG法大规模电力系统潮流计算[J].中国电机工程学报,2006,26(7):89-94. 被引量:21
  • 2FUENTES-LOYOLA R,QUINTANA V H. Medium-term hydrother- mal coordination by semidefinite programming[J]. IEEE Trans on Power Systems,2003,18(4) : 1515-1522.
  • 3MADRIGAL M ,QUINTANA V H. Semidefinite programming re- laxations for { 0,1 t power dispatch problems [ C ] J/IEEE Power Engineering Society Summer Meeting,1999. Edmonton,AL,Canada: [ s.n. ], 1999 : 697-702.
  • 4JALILI-MARANDI V,DINAVAHI V. Large-scale transient stabi- lity simulation on graphics processing units[C]//IEEE Power & Energy Society General Meeting,2009. PES'09. Calgary,Canada: [s.n. ] ,2009 : 1-6.
  • 5PES'09. Calgary,Canada: [s.n. ] ,2009 : 1-6. JALILI-MARANDI V,DINAVAHI V. SIMD-based large-scale tran- sient stability simulation on the graphics processing unit [J]. IEEE Trans on Power Systems,2010,25(3):1589-1599.
  • 6JALILI-MARANDI V,DINAVAHI V. SIMD-based large-scale tran- sient stability simulation on the graphics processing unit [J]. IEEE Trans on Power Systems,2010,25(3):1589-1599.
  • 7TODD M J,TOJ K C. On the Nesterov-Todd direction in semi- definite programming[JJ. SIAM Journal on Optimization,1998,8 (3) :769-796.
  • 8YOUSEF S. Iterative methods for sparse linear systems [M]. IS.1. J : Society for Industrial and Applied Mathematics, 2003 : 75-98.
  • 9FREUND R W,NACHTIGAL N M. A new Krylov-subspace method for symmetric indefinite linear systems[C]//Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics. Atlanta,USA: [s.n.], 1994:1-7.
  • 10DAG H,SEMLYEN A. A new preconditioned conjugate gra- dient power flow[J]. IEEE Trans on Power Systems,2006,18(4): 1248-1255.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部