摘要
目前已有的高阶联合聚类算法主要集中于分析星型高阶异构数据,然而实际应用中,存在大量网状高阶异构数据。为了有效挖掘网状高阶异构数据内部隐藏的结构,提出一种基于图划分的高阶联合聚类算法(简称为GPHCC),该算法将网状高阶异构数据的聚类问题转化为多对二部图的最小正则割划分问题。为了降低计算复杂度,将此优化问题转化为半正定问题求解。实验结果表明GPHCC算法优于目前已有的5种2阶联合聚类算法和5种高阶联合聚类算法。
Existing high-order co-clustering algorithm just can be suitable for analyzing star-structure high-order heterogeneous data. In order to analyze net-structure high-order heterogeneous data, a high-order co-clustering algorithm based on graph partitioning was pro- posed. The problem of high-order co-clustering was converted to optimal problem of graph partitioning of minimum normal cut. In order to reduce computational complexity, the optimal problem was converted to semi-definite problem. Experimental studies showed that the qualities of clustering results of GPHCC are superior five pair-wise coclustering algorithms and five high-order co-clustering algorithms.
出处
《四川大学学报(工程科学版)》
EI
CAS
CSCD
北大核心
2014年第2期105-110,共6页
Journal of Sichuan University (Engineering Science Edition)
基金
国家自然科学基金资助项目(71272216
60903080
60093009)
博士后科学基金资助项目(2012M5100480)
国家科技支撑计划资助项目(2009BAH42B02
2012BAH08B02)
中央高校基本科研业务费专项基金资助项目(HEUCFZ1212
HEUCFT1208)
关键词
网状结构
高阶异构数据
联合聚类
谱聚类
net-structure
high-order heterogeneous data
co-clustering
spectral clustering