期刊文献+

一种融合多模式单演特征的人脸识别方法 被引量:6

Face recognition algorithm fusing multi-modal monogenic features
在线阅读 下载PDF
导出
摘要 为了更好地利用单演幅值和区域主方向信息,分别提出了一种单演韦伯差异激励局部块二值模式和单演区域主方向模式,并在此基础上进一步采用分块子模式策略融合两种特征。该方法首先对单演幅值求取差异激励,将差异激励分解为正值和幅值图像;然后对正值和幅值图像采用基于分块的局部二值模式编码,采用主成分分析方法求取单演区域主方向,并对主方向进行均匀量化,再采用异或编码。在获取两种特征后,采用分块子模式的策略对两种特征进行加权融合。在AR和CAS-PEAL上的实验表明,MWLMBP和MDOP两种特征提取方法能够有效提取图像的判别信息,进一步融合两种特征的方法能够有效增强特征的分类能力,提高特征的识别性能。 In order to make full use of monogenic magnitude and orientation, this paper proposed a method based on monogenic magnitude Weber difference excitation local binary pattern and monogenic region domain orientationg And it proposed a method which fusion the two patterns using block-based sub-patterns. Firstly, it calculated the monogenic magnitude Weber difference ex- citation, and divided the excitation into positive image and negative image, after that, used the muhi-blocks local binary patterns to encode both images. Secondly, it calculated the region domain orientation with principal component analysis method, and then quantized it uniformly and encoded it with XOR method. After obtained the two features, it used the block-based sub-patterns strategy to fusion them with weight. The experiments on AR and CAS-PEAL show that, monogenic weber excitation local binary patterns and monogenic domain orientation patterns can extract discriminate information effectively, and the fusion with the two features can enhance the classification ability of features, and improve the recognition performs.
出处 《计算机应用研究》 CSCD 北大核心 2014年第4期1246-1251,共6页 Application Research of Computers
关键词 单演信号 韦伯 局部二值 主成分分析 区域主方向 monogenic signal Weber local binary pattern principal component analysis region domain orientation
  • 相关文献

参考文献15

  • 1汪大任,刘慧玲,王安志,李明东.人脸识别中PCA,2DPCA以及分块PCA的性能分析与比较[J].中国西部科技,2009,8(27):14-16. 被引量:5
  • 2BELHUMEUR P N,HESPANHA J P, KRIEGMAN D J. Eigenfacesvs. fisherfaces : recognition using class specific linear projection [J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7) :711-720.
  • 3OJALA T, PIETIKANEN M, MAENPAA T. Multi-resolution gray-scale and rotation invariant texture classification with local binary pat-tems[J]. IEEE Trans on Pattern Analysis and Machine Intelli-gence,2002,24(7) :971-987.
  • 4GUO Zhen-hua, ZHANG Lei, ZHANG D. A completed modeling oflocal binary pattern operator for texture classification [J]. IEEETrans on 丨mage Processing, 2010,19(6) :1657-1663.
  • 5TAN Xiao-yang, TRIGGS B. Enhanced local texture feature sets forface recognition under difficult lighting conditions [J]. IEEE Transon image Processing,2010,19(6) :1635-1650.
  • 6CHEN Jie, SHAN Shi*guang, HE Chu, et al. WLD: a robust localimage descriptor [J]. IEEE Trans on Pattern Analysis and Ma-chine Intelligence, 2010,32(10) :1705-1720.
  • 7GONG Da-yi, LI Shu-tao,XIANG Yin. Face recognition using theweber local descriptor[C] //Proc of the 1st Asian Conference on Pat-tern Recognition. 2011:589-592.
  • 8LIU Cheng-jun,WECHSLER H. Gabor feature based classificationusing the enhanced fisher linear discriminate model for face recogni-tion[J]. IEEE Trans on Pattern Analysis and Machine Intelli-gence, 2002,11(4) :467-476.
  • 9ZHANG Wen-chao, SHAN Shi-guang, GAO Wen, et al. Local gaborbinary pattern histogram sequence (LGBPHS ) ; a novel non-statisticalmodel for face representation and recognition [C] //Proc of the 5 th In-ternational Conference on Computer Vision. 2005:786-791.
  • 10ZHANG Lin, ZHANG Lei, GUO Zhen-hua, et al Monogenic-LBP:a new approach for rotation invariant texture classification [C] //Procof the 10th International Conference on Image Processing. 2010 :2677-2680.

二级参考文献22

  • 1何国辉,甘俊英.PCA类内平均脸法在人脸识别中的应用研究[J].计算机应用研究,2006,23(3):165-166. 被引量:29
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3OJALA T, PIETIKAJNEN M, HARWOOD D. A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, 1996,29( 1 ) :51-59.
  • 4AHONEN T, HADID A, PIETIKAINEN M. Face recognition with local binary patterns [ C ]//Proc of the 8th European Conference on Computer Vision. Berlin : Springer-Verlay ,2004 : 469-481.
  • 5PIETIKAINEN M. hnage analysis with local binary patterns[C]// Proc of the 14th Scandinavian Conference on Image Analysis. Berlin: Springer-Verlay,2005 : 115- 118.
  • 6熊承义,李丹婷,笪邦友.基于LBP和PCA特征提取的人脸识别[J].中央民族大学学报,2011,30(2):75-79.
  • 7LU Hai-ping, PI,ATANIOTIS K N, VENESANOPOULOS A N. MPCA: multilinear principal component analysis of tensor objects [ J ]. IEEE Trans on Neural Networks,2008,19( 1 ) :18-39.
  • 8WANG Jin, CHEN Yu, ADJOUADI M. A comparative studv of multilinear principal component analysis for face recognition [ C ]//Proc of IEEE Applied hnagery Pattern Recognition Workshop. Washington DC : IEEE Computer Society ,2008 : 1-6.
  • 9SHEHMINA J. Face recognition system using multilinear principal component analysis and locality preserving projection [C]//Proc of IEEE GCC Conference and Exhibition. 2011:283-286.
  • 10ZHANG Lun, CHU Ru-feng,XIANG Shi-ming,et al. Face detection based on mnlti-block LBP representation [ C ]//Lecture Notes in Computer Science, vol 4642. Berlin :Springer-Verlay,2007:11- 18.

共引文献19

同被引文献48

  • 1周建民,陈超,涂文兵,刘依,胡艳斌.红外热波技术、有限元与SVM相结合的复合材料分层缺陷检测方法[J].仪器仪表学报,2020,41(3):29-38. 被引量:23
  • 2万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 3张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 4Jabid T,Kabir M H,Chae O.Local Directional Pattern(LDP)for face recognition[C]//Proceedings of International Conference on Consumer Electronics.Las Vegas:IEEE Press,2010:329-330.
  • 5Rojas C J A,Rivera A R,Chae O.Facial expression recognition based on local sign directional pattern[C]//Proceedings of the 2012 19th IEEE International Conference on Image Processing.Orlando:IEEE Press,2012:2613-2616.
  • 6Zhong Fujin,Zhang Jiashu.Face recognition with enhanced local directional patterns[J].Neurocomputing,2013,119:375-384.
  • 7Schwartz W R,Silva R D D,Davis L S,et al.A novel feature descriptor based on the Shearlet transform[C]//Proceedings of the 2011 18th IEEE International Conference on Image Processing.Brussels:IEEE Press,2011:1033-1036.
  • 8Kong Weiwei.Technique for gray-scale visual light and infrared image fusion based on non-subsampled Shearlet transform[J].Infrared Physics&Technology,2014,63:110-118.
  • 9Heikkil?M,Pietik?inen M,Schmid C.Description of interest regions with local binary patterns[J].Pattern Recognition,2009,42(3):425-436.
  • 10苏煜,山世光,陈熙霖,高文.基于全局和局部特征集成的人脸识别[J].软件学报,2010,21(8):1849-1862. 被引量:118

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部