期刊文献+

变系数分数阶反应-扩散方程的数值解法 被引量:2

A Numerical Method for Fractional Reaction-Dispersion Equation with Variable Coefficients
在线阅读 下载PDF
导出
摘要 考虑了变系数分数阶反应-扩散方程,将一阶的时间偏导数和二阶的空间偏导数分别用Caputo分数阶导数和Riemann-Liouville分数阶导数替换,利用L1算法和G算法对方程的变系数分数阶导数进行适当的离散,给出了该方程的一种计算有效的隐式差分格式,并证明了这个差分格式是无条件稳定和无条件收敛的,且具有o(τ+h)收敛阶.最后用数值例子说明差分格式是有效的. A fractional reaction-dispersion equation with variable coefficients is considered which the first-order time derivative and the second-order space derivative is replacing by Caputo fractional derivative and Riemann-Liouville derivative respectively, and an implicit difference scheme is presented by using the algorithm of L1 and G to discrete the variable coefficients fractional derivative efficaciously. It is showed that the scheme is unconditional stable and convergence respectively, the convergence order of the scheme is o(τ+h). Finally, a numerical example demonstrates the difference method is effective.
出处 《沈阳大学学报(自然科学版)》 CAS 2014年第1期76-80,共5页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(10671132 60673192) 攀枝花学院校级科研项目(2013YB05)
关键词 变系数 反应一扩散方程 隐式差分 稳定性 收敛性 variable coefficients reaction-dispersion equation implicit difference stability convergence
  • 相关文献

参考文献10

二级参考文献49

共引文献75

同被引文献35

  • 1马亮亮.一种时间分数阶对流扩散方程的隐式差分近似[J].西北民族大学学报(自然科学版),2013,34(1):7-12. 被引量:5
  • 2常福宣,陈进,黄薇.反常扩散与分数阶对流-扩散方程[J].物理学报,2005,54(3):1113-1117. 被引量:26
  • 3佟淑娇,郑伟,陈宝智.有毒液体泄漏渗流污染后果分析[J].工业安全与环保,2006,32(10):56-58. 被引量:5
  • 4夏源,吴吉春.分数阶对流——弥散方程的数值求解[J].南京大学学报(自然科学版),2007,43(4):441-446. 被引量:13
  • 5PODLUBNY I. Fractional Differential Equations[ M]. New York, London:Academic Press, 1999.
  • 6HILFER R. Applications of Fractional Calculus in Physics [ M ].Singapore:Word Scientific,2000.
  • 7MORTON K W, MARYERS D F. Numerical Solution of Partial Differential Equation [ M ]. Cambridge:Cambridge University Press, 2005.
  • 8LUCHKO Y. Initial -boundary- value problems for the generalized multi -term time -fractional diffusion equation [ J ]. J Math Anal Appl,2011,374(2) :538 -548.
  • 9LIU F, ZHUANG P, ANH V, et al. Stability and convergence of the difference methods for the space -time fractional advection - diffusion equation [ J ]. Appl Math Comput, 2007,191 ( 1 ) : 2 - 20.
  • 10JIANG H, LIU F, TURNER I, et al. Analytical solutions for the multi - term time - space Caputo - Riesz fractional advection - diffusion equations on a finite domain[J]. J Math Anal Appl,2012,389(2) :1117 - 1127.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部