摘要
对图G(V ,E) ,若一正常k 染色f使得f[i]-f[j]≤ 1(i,j=1,2 ,… ,k) ,其中f[i]={vv∈V(G)且f(v) =i} ,f(v)表示顶点v的色 ,则称f为G(V ,E)的k 均匀染色 .图的均匀染色问题就是要确定使图G(V ,E)具有k 均匀染色的最小的k .
Let G(V,E) be a graph,a k proper coloring f is called a k equitable coloring of G(V,E) if f[i]-f[j]≤1(i,j=1,2,…,k), where f[i]={vv∈V(G) and f(v)=i},f(v) denotes the color of vertex v∈V(G). The equitable coloring problem is to calculate the minimum k for which there exists a k equitable coloring of G(V,E). A neural network model of equitable coloring problem is constructed.
出处
《西北师范大学学报(自然科学版)》
CAS
2001年第1期34-36,共3页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目!( 198710 36)
关键词
均匀染色
神经网络模型
算法
图
equitable coloring
neural network model
algori<