期刊文献+

具有随机利率的分数型复合期权定价模型 被引量:2

Fractional compound options pricing model with stochastic interest rate
在线阅读 下载PDF
导出
摘要 假定股票价格遵循分数布朗运动驱动的随机微分方程,利率满足由分数布朗运动驱动的Vasicek模型.利用分数布朗运动随机分析与方法,建立了随机利率下金融市场数学模型,得到了此模型下复合期权的定价公式. It was supposed that stock price process followed stochastic differential equation driven by fractional Brownian motion , and interest rate met the Vasicek model driven by frac-tional Brownian motion .The mathematic model of financed market with stochastic interest rate was developed and the pricing formula for compound option was obtained by fractional Brownian motion stochastic analysis theory and method .
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2014年第1期97-102,共6页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 陕西省教育厅自然科学专项基金项目(12JK0862)
关键词 分数布朗运动 复合期权 随机利率 fractional Brownian motion compound option stochastic interest rate
  • 相关文献

参考文献13

二级参考文献91

共引文献61

同被引文献22

  • 1刘坚,杨向群,颜李朝.随机利率和随机寿命下的欧式未定权益定价[J].广西师范大学学报(自然科学版),2005,23(4):49-52. 被引量:7
  • 2赵建国,师恪.股票价格服从跳-扩散过程的期权定价模型[J].新疆大学学报(自然科学版),2006,23(2):166-169. 被引量:4
  • 3ELLIOTT R J,HOEK J.A general fractional white noise theory and applications to finance[J].2003,13(2):301-330.
  • 4BIAGINI F,HU Y,KSENDAL B,et al.Stochastic calculus for fractional brownian motion and applications[M].New York:Springer,2008.
  • 5BLADT M T,RYDBERG H.An actuarial approach to option pricing under the physical measure and without market assumptions[J].Insurance:Mathematics and Economics,1998,22(1):65-73.
  • 6CHEN S.Financial engineering[M].Shang Hai:Fudan University Press,2002.
  • 7XUE H,LU J X,LI Q Y,et al.Fractional jump-diffusion pricing model under stochastic interest rate[C]//IACSIT Press:2011 3rd International Conference on Information and Financial Engineering,2011.428-432.
  • 8ES -SEBAIY K, TUDOR C A. Multidimensional bifractional Brownian motion : Ito and Tanaka formulas [ J ]. Stochastics and Dynamics, 2007, 7(3): 365-388.
  • 9RUSSO F, TUDOR C. On the bifractional Brownian motion [J]. Stochastic Processes and Applications, 2006, 116 (5): 830 - 856.
  • 10隋梅真,张元庆.分数布朗运动和泊松过程共同驱动下的欧式期权定价[J].山东建筑大学学报,2008,23(1):70-73. 被引量:8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部