期刊文献+

一种无监督学习的异常行为检测方法 被引量:8

Unsupervised Learning Algorithm for Abnormal Behavior Detection
在线阅读 下载PDF
导出
摘要 针对智能视频监控的需求,提出一种无监督学习的异常行为检测方法。首先,采用混合高斯模型建模提取出运动目标,对运动区域进行标记;然后提取运动区域内的光流信息,将其归一化成特征矩阵,并建立实时更新的特征矩阵观测序列;最后利用二维主成分分析(2DPCA)的重构原理对观测序列进行分析,根据重构特征矩阵与原特征矩阵的能量比来判断是否存在异常行为。基于不同数据库下的视频序列实验结果验证了所提方法的有效性。 In order to meet the needs of intelligent video surveillance, an unsupervised abnormal detecting algorithm was proposed. Firstly, model of mixture of Gaussians was used to extract the motion area, and the motion area was labeled. Then, observation sequence updated in real-time of feature matrix was established by the optical flow features obtained from labeled area which was normalized to the feature matrix. Finally, applying reconstruction works of two-dimensional principal component analysis on the sequence, abnormal behavior can be detected according to the energy ratio between the recovered feature matrix and original feature matrix. Experiments were conducted on various video datasets, which shows the effectiveness of the proposed method.
出处 《光电工程》 CAS CSCD 北大核心 2014年第3期43-48,共6页 Opto-Electronic Engineering
基金 国家自然科学基金(60574051) 江苏省产学研联合创新资金-前瞻性联合研究项目(BY2012067)
关键词 异常行为检测 光流特征 二维主成分分析 无监督学习 abnormal behavior detection optical flow feature two-dimensional principal component analysis unsupervised learning
  • 相关文献

参考文献2

二级参考文献24

  • 1钟诚,罗程.无监督异常检测的核聚类和序列分析方法[J].计算机研究与发展,2008,45(z1):326-331. 被引量:5
  • 2彭新光,靳燕.短序列频度模式分类异常检测[J].计算机研究与发展,2007,44(z2):286-290. 被引量:1
  • 3卢鋆,吴忠望,王宇,卢昱.基于kNN算法的异常行为检测方法研究[J].计算机工程,2007,33(7):133-134. 被引量:14
  • 4Collins R T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Mazhine Intelligence, 2000, 22(8): 745 - 746
  • 5Hogg D. Model-based vision: a program go see a walking person. Image and Vision Computing, 1983, 1(1): 5-20
  • 6Chain T J, Rehg J M. A multiple hypothesis approach to figure tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Ford Collins, USA: IEEE, 1999. 239-244
  • 7Yilmaz A, Shah S. Recognizing human actions in videos acquired by uncalibrated moving cameras. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 150-157
  • 8Cheung G K M, Kanade T, Bouguet J Y, Holler M. A real time system for robust 3D voxel reconstruction of human motions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 714-720
  • 9Lu C M, Ferrier N J. Repetitive motion analysis: segmentation and event classification. IEEE Transaztions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 258-263
  • 10Bobick A F, Davis J W. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267

共引文献34

同被引文献53

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部