期刊文献+

基于数据驱动的区域交通TOD时段识别方法研究

Data-driven Methodology for Identifying Time-of-day Intervals of Regional Traffic
在线阅读 下载PDF
导出
摘要 提出了一种基于数据驱动的TOD时段识别方法,对区域不同路口、不同流向、不同时刻的交通流数据,采用多元相关分析、主成分分析等在空间尺度上识别出路网的关键路口和关键交通流向,采用层次聚类在时间尺度上识别出不同的交通状态和各TOD时段.以9个道路交叉口流量数据为应用实例,获取其中6个不同路口方向为关键交通流,并将不同时刻观测值聚类为5种不同的交通状态,进而识别出1d的8个TOD时段,每个时段分别代表干线或区域高、中、低等不同流量时期,表明了该方法的有效性. A data-driven method is proposed to identify regional traffic TOD intervals through analyzing traffic flow data w hich are collected from multi road intersections ,multiple directions and different times .Firstly ,traffic data will be checked by three kinds of screening rules and outlier data will also be detected by visual and statistical methods .Invalid and missing data can be interpolated by several interpolation algorithms ,such as EM and MCMC methods .Secondly ,from the perspective of spatial scale ,critical traffic flows in traffic network are identified by using multiple correlation analysis and principal component analysis ,and four statistical indexes are applied to calculate the number of critical traffic flows .Thirdly ,from the perspective of temporal scale ,traffic states of different time are clas-sified by hierarchical clustering ,and finally TOD intervals are ascertained by using statistical histo-gram .This method is also demonstrated by analyzing nine intersections’ vehicle data at Beijing .Six different critical flow s are identified from 37 traffic flow s ,and five traffic states are also obtained by clustering 15-minute monitoring data ,and eight T OD intervals are finally determined .Each T OD in-terval is a peak ,mid or off-peak period of artery or region traffic .It show s that this data-driven meth-od is effective and practical .
出处 《武汉理工大学学报(交通科学与工程版)》 2014年第1期40-45,共6页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 山东省自然科学基金项目(批准号:ZR2012DM010) 国家自然科学基金项目(批准号:40701138)资助
关键词 TOD时段识别 交通状态 多元相关分析 主成分分析 层次聚类 TOD interval identifying traffic state multiple correlation analysis principal component analysis hierarchical clustering
  • 相关文献

参考文献6

  • 1HAUSER T A, SCHERER W T. Data mining tools for real-time traffic signal decision support & mainte- nance[A]. 2001 IEEE International Conference on Systems, Man, and Cybernetics [C]//IEEE, 2001: 1471-1477.
  • 2WANG T. A methodology for data-driven signal tim- ing optimization[D]. Virginia:University of Virgini- a,2003.
  • 3施莉娟,朱健,陈小鸿,张祎.基础交通数据质量评价研究[J].交通信息与安全,2011,29(5):57-61. 被引量:11
  • 4TUROCHY R E. Traffic condition monitoring using multivariate statistical quality control[D]. Virginia: University of Virginia, 2001.
  • 5韩卫国,王劲峰,王海起,胡建军.基于数据可视化的交通流量分析[J].武汉理工大学学报(交通科学与工程版),2004,28(5):668-670. 被引量:21
  • 6韩卫国,王劲峰,胡建军.交通流量数据缺失值的插补方法[J].交通与计算机,2005,23(1):39-42. 被引量:26

二级参考文献25

  • 1苏鹏.信息可视化在高速公路管理系统中的应用[J].公路交通科技,2003,20(z1):19-21. 被引量:1
  • 2赵慧,于雷,耿彦斌.国内外实时交通流数据质量控制比较与分析[J].ITS通讯,2005,7(2):15-19. 被引量:4
  • 3宋敏,覃正.国外数据质量管理研究综述[J].情报杂志,2007,26(2):7-9. 被引量:53
  • 4丁海龙,徐宏炳.数据质量分析及应用[J].计算机技术与发展,2007,17(3):236-238. 被引量:35
  • 5Traffic Data Quality Measurement[R]. Washington, D.C. :U. S. Department of Transportation,2004.
  • 6Shawn Turner. Defining and measuring traffic data quality[J]. Transportation Research Record: Journal of the TRB,2004(187) :62-69.
  • 7Ahn K,Rakha H, Hill D. Data quality white paper [R]. Washington,D. C. : Department of Transportation, FHWA-HOP-08-038, June, 2008.
  • 8张文彤.SPSS11统计分析教程(高级篇)[M].北京:希望电子出版社,2002.166-171.
  • 9Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the em algorithm.Journal of the Royal Statistical Society, 1977, 39(1): 1-38.
  • 10Raghunathan R E, Siscovick D S. A multiple-imputation analysis of a case-controlled study of the risk of primary cardiac arrest among pharmacologically treated hypertensives. Applied Statistics,1996, 45(3): 335-352.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部