期刊文献+

Sharp power mean bounds for Seiffert mean 被引量:4

Sharp power mean bounds for Seiffert mean
在线阅读 下载PDF
导出
摘要 In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a and b, respectively. In this paper, we find the greatest value p = log 2/(log Tr - log 2) = 1.53.- and the least value q -- 5/3 - 1.66.. such that the double inequality Mp(a,b) 〈 T(a,b) 〈 Mq(a,b) holds for all a, b 〉 0 with a # b. Here, Mp(a, b) and T(a, b) are the p-th power and Seiffertmeans of two positive numbers a and b, respectively.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第1期101-107,共7页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(61174076,61374086,11171307) the Natural Science Foundation of Zhejiang Province(LY13A010004)
关键词 power mean Seiffert mean INEQUALITY power mean,Seiffert mean,inequality
  • 相关文献

参考文献1

二级参考文献14

  • 1Stolarsky K B. The power and generalized logarithmic means. Amer Math Monthly, 1980, 87(7): 545-548.
  • 2Pearce C E M, Pecaric J. Some theorems of Jensen type for generalized logarithmic means. Rev Roumaine Math Pure Appl, 1995, 40(9/10): 789-795.
  • 3Seiffert H J. Aufgabe β 16. Die Wurzel, 1995, 29:221-222.
  • 4Hasto P A. A monotonicity property of ratio of symmetic homogeneous means. J Inequal Pure Appl Math, 2002, 3(5): Article 71.
  • 5Zheng N G, Zhang X M, Chu Y M. Convexity and geometrical convexity of exponential and logarithmic means in N variables. Acta Math Sci, 2008, 28A(6): 1173 1180.
  • 6Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities related to the power, harmonic and identric means. Acta Math Sci, 2011, 31A(5): 1377-1384.
  • 7Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities among various means of two arguments. Abstr Appl Anal, 2009, Article ID 694394.
  • 8Kahlig P, Matkowski J. Functional equations involving the logarithmic mean. Z Angew Math Mech, 1996, 76(7): 385-390.
  • 9Pittenger A O. The logarithmic mean in n variables. Amer Math Monthly, 1985, 92(2): 99-104.
  • 10Pdlya G, Szeg6 G. Isoperimetric Inequalities in Mathematical Physics. Princenton: Pricenton University Prees, 1951.

共引文献2

同被引文献9

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部