期刊文献+

基于改进SVC的金融时间序列预测

在线阅读 下载PDF
导出
摘要 针对金融时间序列高噪声,强非线性和不确定性等特点,对传统加权支持向量机(WSVM)进行了改进.提出了基于改进加权支持向量机和再加权支持向量机(RWSVM)的金融时间序列预测方法.研究表明,与传统加权支持向量机相比,改进的加权支持向量机有效地提高了金融时间序列预测的精度。
作者 张正阳 陈静
出处 《现代商业》 2014年第5期39-40,共2页 Modern Business
  • 相关文献

参考文献12

  • 1V.N.Vapnik.The Nature of Statistical LearningTheory[M].Springer,New York,second edition,2000.
  • 2LeanYu,ShouyangWang,Kin KeungLai.A neural-networkbased nonlinear metamodeling approach to financial time series forecasting[J].Applied Soft Computing,Volume 9,Issue 2,March 2009,Pages 563–574.
  • 3Ricardo de A.Araújo.Swarm-based translation-invariant morphological prediction method for financial time series forecastingInformation Sciences[J].Volume 180,Issue 24,15December 2010,Pages 4784–4805.
  • 4Chi-Jie Lu,Tian-Shyug Lee,Chih-Chou Chiu.Financial time series forecasting using independent component analysis and support vector regression[J].Decision Support Systems,Volume 47,Issue 2,May 2009,Pages 115–125.
  • 5YANG Lu.GAO Ziyou.A kind of self feedback neural network in time series forecasting[J].Forecasting,1998,17(6):41–43.
  • 6孙延风,梁艳春,姜静清,吴春国.金融时间序列预测中的神经网络方法[J].吉林大学学报(信息科学版),2004,22(1):49-52. 被引量:15
  • 7郑丕谔,马艳华.基于RBF神经网络的股市建模与预测[J].天津大学学报(自然科学与工程技术版),2000,33(4):483-486. 被引量:27
  • 8CAO Lijuan,Tay F E H.Financial forecasting using support vector machines[J]Neural Computing&Applications,2001,10(2):184-192.
  • 9范昕炜,杜树新,吴铁军.可补偿类别差异的加权支持向量机算法[J].中国图象图形学报(A辑),2003,8(9):1037-1042. 被引量:26
  • 10赵晖,荣莉莉.支持向量机组合分类及其在文本分类中的应用[J].小型微型计算机系统,2005,26(10):1816-1820. 被引量:7

二级参考文献31

  • 1[1]Vapnik V. The nature of statistical learning theory[M]. New York : Springer-Verlag, 1995.
  • 2[2]Joachims T. Text categorization with support vector machines[R]. Technical Report, LS Ⅷ Number 23, University of Dortmund, German, 1997.
  • 3[3]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: IEEE Conference on Computer Vision and Pattern Recognition [C],Puerto Rico, 1997: 130~136.
  • 4[4]Schmidt M. Identifying speaker with support vector networks[A]. In: Interface'96 Proceedings [C], Sydney, Australia,1996.
  • 5[5]Cai Yu-Dong, Liu Xiao-Jun, Xu Xue-biao et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002,26 (3): 293 ~ 296.
  • 6[6]Chew Hong-Gunn, Crisp D J, Bogner R E et al. Target detection in radar imagery using support vector machines with training size biasing [A]. In: Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision[C], Singapore, 2000.
  • 7[7]Chew Hong-Gunn, Bogner Robert E, Lim Cheng-Chew. Dual nu-support vector machine with error rate and training size biasing[A]. In:Proceedings of 26th IEEE ICASSP(International Conference on Acoustics, Speech, and Signal Processing) 2001[C], Salt Lake City, UT,USA, 2001: 1269~1272.
  • 8[8]Scholkopf B, Smola A, Williamson R C et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207~ 1245.
  • 9[9]Lin Chun-Fu, Wang Sheng-De. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464~471.
  • 10[10]Chang Chih-Chung, Lin Chih-Jen. Training nu-support vector classifiers: theory and algorithms [J]. Neural Computation,2001, 13(9): 2119~2147.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部