期刊文献+

密闭系统中光照强度及栽培密度对小麦光合效率的影响 被引量:2

Effects of Light Intensity and Plant Density on Photosynthetic Rate of Wheat in Enclosed System.
原文传递
导出
摘要 目的研究密闭系统中光照强度和栽培密度对小麦生长状况的影响。方法实验设置4个光照强度水平(300,400,500和600txmol·m-2·s-1,光源为90%红光+10%蓝光的组合LED灯)和4个栽培密度水平(200,400,600和800株·m-2),共16个处理,测定各处理下小麦的光合速率、产量和营养品质等指标。结果小麦光合速率随光照强度增加呈现先升后降的趋势,并在500μmol·m-2·s-1时达到最大;在所设栽培密度范围(200~800株·m-2)内,栽培密度对光合速率的影响不明显;产量随光照强度的变化趋势与光合速率的变化规律表现出较好的一致性,即在500μmol·m-2·s-1时达到最大。单株产量随栽培密度增大而降低,而单位面积产量随栽培密度增大而提高。以上各光照强度及栽培密度对籽粒营养品质影响不明显。结论在所用的红蓝LED光源下,500μmol·m-2·s-1的光照强度对密闭系统中小砉的培兼较为话宦:而左200~800株·m-2哉培密唐范围内.栽培密唐增大有利于小麦高产。 Objective To study the effects of light intensity and plant density on the growth of wheat in an en- closed system. Methods Sixteen treatments were set with light intensity of 300,400,500 and 600 μmol · m -2 ·s-1 and planting density of 200,400, 600 and 800 seeds · m -2 Photosynthetic rate, seed yield and seed nutrition quality were measured for each treatment. Results The photosynthetic rate of wheat had an increasing tendency at first and then decreased and reached maximum photosynthetic rate at 500 μmol · m-2 ·s-1 light intensity. Meanwhile, the photosynthetic rate was scarcely affected by the planting density in the range from 200 seeds μ m-2 to 800 seeds · m-2. The wheat at the light intensity of 500 μmol · m-2 · s -1 was the most productive in accordance with the effect of light intensity on photosynthetic rate. Among the four levels of planting density, the more densely planted group gained higher yield per m2, however, with a lower single plant yield. Conclusion Under the red-blue LED illumination, 500 μmol · m-2 · s-1 is the optimal light in- tensity for the growth of wheat in enclosed system. In the range from 200 seeds·m-2 to 800 seeds · m-2, denser planting can produce higher yield.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2014年第1期54-58,共5页 Space Medicine & Medical Engineering
基金 人因工程自主课题(HF11ZZB01)
关键词 受控生态生保集成实验平台 小麦 光照强度 栽培密度 光合速率 CELSS integration experiment platform wheat light intensity planting density photosyntheticrate
  • 相关文献

参考文献14

  • 1Salisbury FB. Growing crops for space explorers on the moon,Mars,or in space [J]. Adv Space Biol Med, 1999, 7: 131- 162.
  • 2Wheeler RM, Stutte GW, Subbarao GV, et al. Plant growth and human life support for space travel [ Z ]. Pessarakli M. Handbook of Plant and Crop Physiology, 2001 : 925-94l.
  • 3Gitelson If, Tikhomirov AA. Volatile metabolites of higher plant crops as a photosynthesizing life support system compo- nent under temperature stress at differentlight intensities [ J]. Adv Space Res, 2003, 31(7) : 1781-1786.
  • 4Guo SS,Tang YK, Gao F, Ai WD, et al. Effects of low pres- sure and hypoxia on the growth and development of wheat [ J]. Aeta Astronautica. 2008.63 "_ 1081-1085.
  • 5唐永康,郭双生,艾为党,秦利锋.不同比例红蓝LED光照对油麦菜生长发育的影响[J].航天医学与医学工程,2010,23(3):206-212. 被引量:49
  • 6Tang YK, Guo SS, Ai WD, et al. Effects of red and blue light emitting diodes (LEDs) on the growth and development of lettuce (var. Youmaicai) [ R ]. SAE Technical paper se- ries, 2009, 1:2565.
  • 7郭双生,艾为党,赵成坚,王建霄.受控生态生保系统中植物生长光源的选择[J].航天医学与医学工程,2003,16(z1):490-493. 被引量:32
  • 8Stasiak M, Gidzinski D, Jordan M. Crop selection for ad- vanced life support systems in the ESA MELiSSA program: Durum wheat ( Triticum turgidum var durum ) [ J ]. Adv. Space Res, 2012, 49(12):1684-1690.
  • 9Bugbee S. Current and potential productivity of wheat for a controlled environment life support system [ J ]. Adv Space Res, 1989, 9(8) : 5-15.
  • 10Bugbee S. Wheat production in controlled environments [ J ]. Adv Space Res, 1987, 7(4) :123-132.

二级参考文献24

  • 1郭双生,艾为党,赵成坚,王建霄.受控生态生保系统中植物生长光源的选择[J].航天医学与医学工程,2003,16(z1):490-493. 被引量:32
  • 2林金星,胡玉熹.STRUCTURAL RESPONSE OF SOYBEAN LEAF TO ELEVATED CO_2 CONCENTRATION[J].Acta Botanica Sinica,1996,38(1):31-34. 被引量:26
  • 3韦彩妙,林植芳,孔国辉.提高CO_2浓度对两种亚热带树苗光合作用的影响[J].Acta Botanica Sinica,1996,38(2):123-130. 被引量:24
  • 4郭双生,唐永康,朱景涛,王晓霞,尹永利,冯红旗,艾为党,刘向阳.受控生态生保技术综合实验系统的研制[J].航天医学与医学工程,2006,19(5):350-353. 被引量:4
  • 5[1]Kirty GM, Tri TO, Smith FD. Bioregenerative planetary life support systems test complex: facility description and testing objectives[R]. SAE Technical Paper Series 972342.
  • 6[2]Bartsev SI, Mezhevikin VV, Okhonin VA. Evaluation of optimal configuration of hybrid life support system for space[J]. Adv Space Res, 2000, 26(2): 323-326.
  • 7[3]Penley NJ, Schafer CP, Bartoe JD. The international space station as a microgravity research platform[J]. Acta Astronautica, 2002, 50(11): 691-696.
  • 8[4]Wheeler RM, Mackowiak CL, Sager JC, et al. Proximate composition of CELSS crops grown in NASA's biomass production chamber[J]. Adv Space Res, 1996, 18(4/5): 43-47.
  • 9[6]Bula RJ, Morrow RC, Tibbitts,et al. Light emitting diodes as a radiation source for plants[J]. HortScience, 1991, 65(1): 28-33.
  • 10[7]Bula RJ Tibbitts TW, Morrow RC, et al. Commercial involvement in the development of space-based plant growing technology[J]. Adv Space Res, 1992, 12(5): 5-10.

共引文献75

同被引文献25

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部