期刊文献+

考虑状态持续时间的改进Viterbi算法及语音识别 被引量:3

An Improved Viterbi Algorithm and Speech Recognition with State Duration Considered
在线阅读 下载PDF
导出
摘要 针对考虑状态持续时间的 HMM,在非线性动态规划的基础上设计了改进的 Viterbi算法 ,并给出了 Viterbi算法和 K- means聚类相结合的语音识别过程 ,最后分别以一般和考虑状态持续时间的 HMM及 Viterbi算法对 50个汉语音节进行了识别实验。结果表明 ,考虑状态持续时间并应用改进的 Viterbi算法时 ,虽然语音训练过程要慢一些 ,但其识别速度几乎是一样的 ,而且误识率有明显的降低 。 Vaseghi′s consideration of state duration [3] is, in our opinion, not reasonable in one important respect, which is quite complicated. In section 2, we report how this one important respect should be changed to make it reasonable. We, like Vaseghi, use eq.(7) to calculate transition probability a ij (d i) . But concerning how to make use of a ij (d i) in considering state duration, we and Vaseghi hold different views. More importantly, Vaseghi considered the state duration for a certain state s i at a certain time to be a fixed value, but we consider that the speech vector can move along any of many possible paths, hence the state duration can have many different possible values. Our view requires eqs.(10) through (17) in section 2 to be reflected fully. In section 3, the training and recognition process using the improved Viterbi algorithm and K means clustering is introduced. Finally, experiments are carried out for 50 Chinese phones using standard and the improved Viterbi algorithm respectively. Results show that, with the improved algorithm, although training speed is slower, recognition speed is almost the same, and recognition error rate may be reduced greatly.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2000年第4期595-599,共5页 Journal of Northwestern Polytechnical University
关键词 状态持续时间 HMM 非线性动态规划 语音识别 VITERBI算法 K-MEANS聚类 state duration, Viterbi algorithm, speech recognitio0
  • 相关文献

参考文献4

  • 1姚天任.数字语音处理[M].武汉:华中理工大学出版社,1994.27-47.
  • 2杨行峻,语音信号数字处理,1995年
  • 3姚天任,数字语音处理,1994年
  • 4Gu H,IEEE Trans Signal Processing,1991年,39卷,8期,1743页

共引文献6

同被引文献16

  • 1冯刚,段其昌,张从力.一种多门限过零率前端检测理论的参数自优化方法研究[J].仪器仪表学报,2004,25(z3):525-527. 被引量:6
  • 2张仁志,崔慧娟.基于短时能量的语音端点检测算法研究[J].电声技术,2005,29(7):52-54. 被引量:47
  • 3陈方,高升.语音识别技术及发展[J].电信科学,1996,12(10):54-57. 被引量:26
  • 4Seneff S. Real-time harmonic pitch detector [ J ]. IEEE Trans. on Acoustics, Speech and Signal Processing, 1978, 26(4) :358-365.
  • 5Rodriguez percheron D, Faundez Zanuy M. Speaker recognition with a MLP classifier and LPCC codebook [ J ]. IEEE ICCASP, 1999,2 : 1005-1008.
  • 6LEE K F. CONTEXT dependent phonetic hidden Markov models forspeaker-independent continuous speech recognition[ J]. IEEE Trans, 1990,38 (4) :599-609.
  • 7Jeih Weih Hung. Optimization of filter-bank to improve the extraction of MFCC features in speech recognition [ J ]. IEEE ISIMP,2004,45 ( 8 ) :675-678.
  • 8Ricotti L P. Multitapering and a wavelet variant of MFCC in speech recognition [ J ]. IP-VIS,2005,152 ( 1 ) :29-35.
  • 9Skowronski M D, Harris J G. Increased MFCC filter band- width for noise-robust phoneme recognition [ J ]. ICASSP, 2002,1 ( 1 ) :801-804.
  • 10姚天任,江太辉.数字信号处理[M].武汉:华中理工大学出版社,1998:190-195.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部