期刊文献+

不同温度下微生物燃料电池的运行特性 被引量:8

Research on producing electricity characteristics of microbial fuel cell at different temperatures
在线阅读 下载PDF
导出
摘要 实验采用双室型微生物燃料电池(MFC),以生活废水中厌氧菌作为生物催化剂,葡萄糖为燃料,通过5个不同温度条件下的间歇运行,应用循环伏安、交流阻抗、极化测试等电化学方法考察温度对电池产电性能的影响。结果表明,一定温度范围内,提高温度有助于增强微生物的电化学活性,降低传荷阻抗,提高电池输出功率密度和交换电流密度。32℃时,电池产电效能最佳,电池功率密度和交换电流密度分别达到156.2 mW/m2和8.02×10-5 mA/m2,温度太低或太高均不利于细菌的电化学活性。体系温度为18℃、25℃、32℃、39℃、46℃时,传荷阻抗Rct在阳极内阻中占的比例分别为97.99%、84.02%、47.36%、91.30%、99.61%,说明传荷阻抗在阳极内阻中占绝对份额,MFC是传荷过程控制下的电化学反应体系。 Taking anaerobic bacteria from domestic waste water as biocatalyst,glucose as fuel,a double-chamber microbial fuel cell (MFC) was constructed. The battery was operated for 5 cycles intermittently.The effect of temperature on its producing electricity characteristics was investigated by electrochemical test methods,including cyclic voltammogram,alternating current impedance and polarization test. In a specific temperature range,electrochemical activity of the microbe improved with increasing temperature,power density and exchange current density were enhanced,while charge transfer impedance decreased. At 32 ℃ the battery showed the best performance. Power density and exchange current density reached 156.2 mW/m2 and 8.02×10-5 mA/m2 at 32 ℃, respectively. However,it was not beneficial to bacterial activity at a too low or too high temperature. When the temperature of the battery was at 18 ℃,25 ℃,32 ℃,39 ℃ and 46 ℃,the percentages of load transfer resistance in anode resistance were 97.99%, 84.02%, 47.36%, 91.30% and 99.61%, respectively. It demonstrated that charge transfer impedance occupied the overwhelming share of total resistance at the anode. MFC was an electrochemical system under the control of charge transfer process.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第3期629-633,650,共6页 Chemical Industry and Engineering Progress
基金 国家自然科学基金项目(20776091 21176168)
关键词 微生物燃料电池 燃料电池 废水 温度 MICROBIAL FUEL cell (MFC) fuel cell wastewater temperature
  • 相关文献

参考文献13

  • 1Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J}. Environ. Sci. Technol., 2003, 38: 2281-2285.
  • 2Mohan S V, Mohanakrishna G, Reddy B P, et al. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment[J].Biochernica[Engineering, 2008, 39: 121-130.
  • 3Logan B E, Regan J M. Microbial fuel cell challenges and applications[J],Environ. Sci. Technol., 2006, 40 (17): 5172-5180.
  • 4张辉,胡勤海,吴祖成,潘慧云.城市污泥能源化利用研究进展[J].化工进展,2013,32(5):1145-1151. 被引量:35
  • 5Rozendal R A, Hamelers H V, Rabaey K, et al. Towards practical implementation of bio- electrochemical wastewater treatment[J]. Trends inBiotechnology, 2008, 26 (8): 450-459.
  • 6郗名悦,孙彦平.介体型MFC内微生物催化剂的在线驯化[J].太原理工大学学报,2008,39(6):554-558. 被引量:7
  • 7张歆.直接氧化型葡萄糖燃料电池的研制[J].中山大学学报(自然科学版),1998,37(5):61-64. 被引量:1
  • 8尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790. 被引量:54
  • 9Hernandez M E, Kappler A, Newman D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. AppL Environ. Microbiol., 2004, 70: 921-928.
  • 10Gralnick J A, Newman D K. Extracellular respiration[J]. Mol. Microbiol., 2007, 65: 1-11.

二级参考文献40

  • 1连静,冯雅丽,李浩然,刘志丹,周良.直接微生物燃料电池的构建及初步研究[J].过程工程学报,2006,6(3):408-412. 被引量:23
  • 2洪义国,郭俊,孙国萍.产电微生物及微生物燃料电池最新研究进展[J].微生物学报,2007,47(1):173-177. 被引量:25
  • 3邹勇进,孙立贤,徐芬,杨黎妮.以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究[J].高等学校化学学报,2007,28(3):510-513. 被引量:17
  • 4卢志,张毅,H.Hanssen,R.D.Thierbach,李志强.德国汉堡污水处理厂污泥循环处理模式探讨[J].中国给水排水,2007,23(10):105-108. 被引量:7
  • 5Logan Bruce E, Regan John M. Electricity-producing bacterial communities in microbial fuel cell[J]. Trends in Microbiology, 2006, 14(12): 512-518.
  • 6Lovley D R. Microbial fuel cell:novel microbial physiologies and engineering approaches[J]. Current Opinion in Biotechnology, 2006,17(3): 327-3321.
  • 7Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotech, 2003, 21(10): 1 229-1 232.
  • 8Kim Hyung Joo, Park Hyung Soo, Hyun Moon Sik, et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella utrefacien[J]. Enzyme and Microbial Technology, 2002, 30(2): 145-152.
  • 9Park Doo Hyun, Zeikus J Gregory. Electricity generation in microbial fuel cells using neutral red as an electronophore[J]. Applied and Environmental Microbiology,2000, 66(4): 1 292-1 297.
  • 10Cho Eun Jeong, Ellington Andrew D. Optimization of the biological component of a bioelectrochemical cell[J]. Bioelectrochemistry, 2007, 70(1): 165-172.

共引文献90

同被引文献162

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部