期刊文献+

多种3-D打印手术导板在骨肿瘤切除重建手术中的应用 被引量:52

USE OF FOUR KINDS OF THREE-DIMENSIONAL PRINTING GUIDE PLATE IN BONE TUMOR RESECTION AND RECONSTRUCTION OPERATION
原文传递
导出
摘要 目的使用多种3-D打印技术制作手术导板,探讨其在骨肿瘤切除重建手术中的应用效果,并对比不同3-D打印技术制备的手术导板优缺点。方法回顾分析2012年9月-2014年1月符合选择标准的31例骨肿瘤患者临床资料,其中男19例,女12例;年龄6~67岁,中位年龄23岁。病程15 d^12个月,中位病程2个月。其中恶性肿瘤13例,良性肿瘤18例;肿瘤位于股骨9例、脊柱7例、胫骨6例、骨盆5例、肱骨3例、腓骨1例。根据术前薄层(0.625 mm)CT扫描等影像学检查所得数据行术前肿瘤切除设计,根据切除计划设计手术导板。术前加工导板使用的3-D打印技术和材料分别为:熔融沉积成型9例(ABS树脂)、光固化立体成型14例(光敏树脂)、3-D印刷工艺5例(石膏)、选择性激光烧结3例(铝合金);导板灭菌后按术前计划应用于术中。通过对比导板制作加工时间分析4种3-D打印技术效率,记录术前设计时间、手术时间、术中透视次数,与同期同类常规手术28例(对照组)进行比较。结果 4种导板制作加工时间分别为:熔融沉积成型(19.3±6.5)h、光固化立体成型(5.2±1.3)h、3-D印刷工艺(8.6±1.9)h、选择性激光烧结(51.7±12.9)h,选择性激光烧结导板制作加工时间明显长于另外3种。31例均成功进行术前设计、导板制作并应用于手术;除3例术中导板断裂变形(ABS树脂1例、石膏2例),改为常规手术治疗外;余28例定位针均成功导入,根据定位针指引准确按术前手术设计截骨。与对照组比较,28例患者术前设计时间延长、手术时间缩短、术中透视次数减少,差异均有统计学意义(P<0.05)。28例均获随访,随访时间1~12个月,平均3.7个月。术后X线片及CT检查示肿瘤均完整切除,大段同种异体骨重建稳定。结论 3-D打印手术导板很好地适应了骨肿瘤手术个体化要求,可在术中实现术前设计,不同3-D打印技术制备的手术导板各有优势,需根据具体手术方式选择。 Objective To explore the effectiveness of excision and reconstruction of bone tumor by using operation guide plate made by variety of three-dimensional (3-D) printing techniques, and to compare the advantages and disadvantages of different 3-D printing techniques in the manufacture and application of operation guide plate. Methods Between September 2012 and January 2014, 31 patients with bone tumor underwent excision and reconstruction of bone tumor by using operation guide plate. There were 19 males and 12 females, aged 6-67 years (median, 23 years). The disease duration ranged from 15 days to 12 months (median, 2 months). There were 13 cases of malignant tumor and 18 cases of benign tumor. The tumor located in the femur (9 cases), the spine (7 cases), the tibia (6 cases), the pelvis (5 cases), the humerus (3 cases), and the fibula (1 case). Four kinds of 3-D printing technique were used in processing operation guide plate: fused deposition modeling (FDM) in 9 cases, stereo lithography appearance (SLA) in 14 cases, 3-D printing technique in 5 cases, and selective laser sintering (SLS) in 3 cases; the materials included ABS resin, photosensitive resin, plaster, and aluminum alloy, respectively. Before operation, all patients underwent thin layer CT scanning (0.625 mm) in addition to conventional imaging. The data were collected for tumor resection design, and operation guide plate was designed on the basis of excision plan. Preoperatively, the operation guide plates were made by 3-D printing equipment. After sterilization, the guide plates were used for excision and reconstruction of bone tumor. The time of plates processing cycle was recorded to analyse the efficiency of 4 kinds of 3-D printing techniques. The time for design and operation and intraoperative fluoroscopy frequency were recorded. Twenty-eight patients underwent similar operations during the same period as the control group. Results The processing time of operation guide plate was (19.3 ± 6.5) hours in FDM, (5.2 ± 1.3) hours in SLA, (8.6 ± 1.9) hours in 3-D printing technique, and (51.7 ± 12.9) hours in SLS. The preoperative design and operation guide plate were successfully made, which was used for excision and reconstruction of bone tumor in 31 cases. Except 3 failures (operation guide plate fracture), the resection and reconstruction operations followed the preoperative design in the other 28 cases. The patients had longer design time, shorter operation time, and less fluoroscopy frequency than the patients of the control group, showing significant differences (P 〈 0.05). The follow-up time was 1-12 months (mean, 3.7 months). Postoperative X-ray and CT showed complete tumor resection and stable reconstruction. Conclusion 3-D printing operation guide plates are well adapted to the requirements of individual operation for bone tumor resection and reconstruction. The 4 kinds of 3-D printing techniques have their own advantages and should be chosen according to the need of operation.
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2014年第3期304-308,共5页 Chinese Journal of Reparative and Reconstructive Surgery
关键词 3-D打印技术 手术导板 骨肿瘤 修复重建 Three-dimensional printing technique Operation guide plate Bone tumor Repair andreconstruction
  • 相关文献

参考文献16

  • 1Takeyasu Y, Oka K, Miyake 1, et al. Preoperative, computer simulation- based, three-dimensional corrective osteotomy for cubitus varus defor- mity with use of a custom-designed surgical device. J Bone Joint Surg (Am), 2013, 95(22): e173.
  • 2Derand P, Rannar LE, Hirsch IM. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery. Craniomaxillofac Trauma Reconstr, 2012, 5(3): 137-144.
  • 3王臻,滕勇,李涤尘,刘非.基于快速成型的个体化人工半膝关节的研制——计算机辅助设计与制造[J].中国修复重建外科杂志,2004,18(5):347-351. 被引量:65
  • 4史俊,徐兵,唐友盛,邱蔚六,沈国芳,卢晓峰.个体化复位模板在颧骨复合体骨折治疗中的应用[J].中国口腔颌面外科杂志,2005,3(4):311-314. 被引量:27
  • 5李惠忠,扬光.定位导向模板结合CT图像在牙种植外科的应用[J].中国口腔种植学杂志,2008,13(4):189-191. 被引量:8
  • 6Omori S, Murase T, Kataoka T, et al. Three-dimensional corrective os- teotomy using a patient-specific osteotomy guide and bone plate based on a computer simulation system: accuracy analysis in a cadaver study. Int J Med Robot, 2013. [Epub ahead of print].
  • 7付军,郭征,王臻,吴智钢,范宏斌,栗向东,李靖,裴延军,李丹.数字骨库的建立及其在骨肿瘤手术治疗中的应用[J].中华创伤骨科杂志,2013,15(1):55-59. 被引量:2
  • 8Mazzoni S, Marchetti C, Sgarzani R, et al. Prosthetically guided max- illofacial surgery: evaluation of the accuracy of a surgical guide and custom-made bone plate in oncology patients after mandibular recon- struction. Plast Reconstr Surg, 2013, 131(6): 1376-1385.
  • 9Ciocca L, Mazzoni S, Fantini M, et al. CAD/CAM guided secondary mandibular reconstruction of a discontinuity defect after ablative can- cer surgery, l Craniomaxillofac Surg, 2012, 40(8): e511-515.
  • 10Ciocca L, Mazzoni S, Fantini M, et al. A CAD/CAM-prototyped ana- tomical condylar prosthesis connected to a custom-made bone plate to support a fibula free flap. Med Biol Eng Comput, 2012, 50(7): 743-749.

二级参考文献64

共引文献139

同被引文献568

引证文献52

二级引证文献461

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部