期刊文献+

高性能铜系层状金属材料设计:纳米尺度下强化能力与韧化能力思考 被引量:2

DESIGN OF HIGH-PERFORMANCE Cu-BASED NANOLAYERED MATERIALS: ON STRENGTHENING AND TOUGHENING ABILITIES AT THE NANOSCALES
原文传递
导出
摘要 对近年来国内外在纳米层状金属材料的强化能力及其尺度与界面效应、塑性形变行为及稳定性等基本规律的研究进展进行了系统的总结,并对纳米层状材料的强化能力与韧化能力进行了深入的探讨.最后,对纳米层状金属材料的强化与韧化能力中的关键科学问题及未来研究进行了展望. In this paper, recent investigations on strengthening ability and effects of length scale and interface, plastic deformation behavior and stability of nanolayered metallic materials are reviewed systematically. The basic mechanisms on the abilities in strengthening and toughening for nanolayered metallic materials were dis- cussed. Finally, several key issues on improving the strengthening and toughening abilities of the nanolayered mate- rials and the potential investigations in the future are stressed.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2014年第2期148-155,共8页 Acta Metallurgica Sinica
基金 国家重点基础研究发展计划项目2010CB631003 国家自然科学基金项目51001105 51071158和51371180资助~~
关键词 纳米尺度 金属 层状材料 强度 塑性形变中图法 nanoscale, metal, layered material, strength, plastic deformation
  • 相关文献

参考文献90

  • 1Hall E O. Proc Phys Soc, 1951; 64B: 747.
  • 2Petch N J. J Iron Steel Inst, 1953; 174: 25.
  • 3Iwahashi Y, Wang J T, Horita Z, Nemoto M, Langdon T G. Scr Mater, 1996; 35: 143.
  • 4Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T. JOM, 2006; 58(4): 33.
  • 5Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893.
  • 6Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G. Scr Mater, 1998; 39: 1221.
  • 7Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 788.
  • 8Meyers M A, Chawla K K. Mechanical Behavior of Materials. Cambridge: Cambridge University Press, 2009: 1.
  • 9Sevillano J G. In: Cahn R W, Haasen P, Kramer E, eds., Materials Science and Technology: A Comprehensive Treatment Plastic Deformation and Fracture of Materials. New York: VCH, 1993: 19.
  • 10Blum W. Trans Am Electrochem Soc, 1921; 40: 307.

二级参考文献460

共引文献148

同被引文献44

  • 1张小强 .张 健. 楼琅洪. 应变速率对一种无铼第二代单晶高温合金950℃低周疲劳性能的影响.腐蚀科学与防护技术, 2015, (8): 0-0.
  • 2Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422.
  • 3Lu K, Lu L, Suresh S. Science, 2009; 324: 349.
  • 4Wang Y B, Sui M L. Appl Phys Lett, 2009; 94: 021909.
  • 5Qin E W, Lu L, Tao N R, Lu K. Scr Mater, 2009; 60: 539.
  • 6Shan Z W, Lu L, Minor A M, Stach E A, Mao S W. JOM, 2008; 60: 71.
  • 7Cao A J, Wei Y G. J Appl Phys, 2007; 102: 083511.
  • 8Dao M, Lu L, Shen Y F, Suresh S. Acta Mater, 2006; 54: 5421.
  • 9Zhu T, Li J, Samanta A, Kim H G, Suresh S. PNAS, 2007; 104: 3031.
  • 10Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部