期刊文献+

一种利用协同过滤预测和模糊相似性改进的基于内容的推荐方法 被引量:11

An Improved Content-based Recommendation Method Through Collaborative Predictions and Fuzzy Similarity Measures
原文传递
导出
摘要 【目的】基于模糊相似性的协同过滤预测和多样性选择算法对基于内容的推荐方法进行改进,提高推荐质量。【应用背景】基于内容过滤的推荐系统(CB-RS)目前已经有比较成功的应用。但是,推荐的多样性、项目特征的表示、用户偏好的建模仍然是基于内容推荐的关键。【方法】对用户特征提出采用一种新的模糊化表示方法,并根据此特征表示进行用户的相似性计算,在此基础上整合协同过滤的多样性预测,对基于内容的推荐方法进行改进。【结果】通过实验,该推荐方法在平均绝对误差、覆盖率以及多样性三方面明显优于当前流行的三种解决方案。【结论】推荐方案在一定程度上能够提高推荐质量,同时增强推荐的多样性。 [Objective] The authors improvecontent-based recommendation method through Fuzzy similarity-based collaborative filtering prediction and diversity selection algorithm to raise the recommendation quality. [Context] There are many successful applications of Content Based Recommender Systems (CB-RS).Recommendation diversity, representation of items as well as users' preference modeling are still critical parts in this field. [Methods] An effective collaborative Content-Based Filtering (CBF) is developed by introducing an item representation scheme, and measuring similarity based on the scheme, and fuzzy similarity measure and fuzzy-CF into the fuzzyoCBF with diversity, in order to improve content-based recommendation method. [Results] Experiment results show that the proposed hybrid scheme (fuzzy CF-CBF) is better than the other three popular schemes in Mean Absolute Error(MAE), coverage and diversity. [Conclusions]The proposed scheme improves the recommendation quality, while enhances the recommended diversity.
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第2期41-47,共7页 New Technology of Library and Information Service
基金 教育部人文社会科学一般项目"电子商务环境下顾客购物偏好推荐及企业利润挖掘"(项目编号:13YJC630195)的研究成果之一
关键词 推荐系统 推荐多样性 模糊CF-CBF 模糊相似性度量 Recommender system Recommendation diversity Fuzzy CF-CBF Fuzzy similarity measures
  • 相关文献

参考文献17

  • 1Adomavicius G, Tuzhilin A. Toward the Next Generalion of Recommender Systems: A Survey of the State-of the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 2曾春,邢春晓,周立柱.基于内容过滤的个性化搜索算法[J].软件学报,2003,14(5):999-1004. 被引量:118
  • 3Zenebe A, Norcio A F. Representation, Similarity Measures and Aggregation Methods Using Fuzzy Sets for Content -Based Recommender Systems[J]. Fuzzy Sets and Systems, 2009, 160(1): 76-94.
  • 4黄洪,杨卓俊,王奔.模糊逻辑在电子商务商品推荐系统中的应用[J].计算机系统应用,2012,21(3):171-175. 被引量:3
  • 5Shih Y Y, Liu D R. Product Recommendation Approaches: Collaborative Filtering via Customer Life Value and Customer Demands[J]. Expert Systems with Applications, 2008, 35(1-2): 350-360.
  • 6Kant V, Bharadwaj K K. Incorporating Fuzzy Trust in Collaborative Filtering Based Recommender Systems[C]. In Proceedingsof the 2nd International Conference of SEMCCO Berlin, Heidelberg: Springer-Verlag, 2011: 433-440.
  • 7朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报,2012,41(2):163-175. 被引量:255
  • 8Balabanovi6 M, Shoham Y. Fab: Content-based, Collabor- ative Recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
  • 9李华,张宇,孙俊华.基于用户模糊聚类的协同过滤推荐研究[J].计算机科学,2012,39(12):83-86. 被引量:37
  • 10王明佳,韩景倜,韩松乔.基于模糊聚类的协同过滤算法[J].计算机工程,2012,38(24):50-52. 被引量:15

二级参考文献97

共引文献502

同被引文献175

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部