期刊文献+

利用短时分数阶PWVD实现多分量Chirp信号分离 被引量:1

Multi-component Chirp signal separation using pseudo Wigner-Ville distribution in short-time fractional Fourier domain
在线阅读 下载PDF
导出
摘要 针对加性高斯白噪声背景下多分量Chirp信号的分离问题,采用一种基于短时分数阶傅里叶的伪魏格纳变换来实现对多分量Chirp信号的分离。该方法利用分数阶傅里叶变换四阶中心矩寻找极值点来确定最佳变换域,在最佳变换域对信号进行旋转的短时傅里叶变换,并进行伪魏格纳变换,最后把在时频面得到的冲激信号变换到时域再进行分数阶傅里叶逆变换,实现了多分量Chirp信号的分离。仿真实验证明该方法可有效地实现多分量Chirp信号分离,有助于后续对各分量的参数估计。 Based on short-time fractional Fourier transform, a new pseudo Wigner-Ville distribution is proposed to analyze and separate multi-component Chirp signal with additive white Gaussian noise. The appropriate fractional domain is found from the knowledge of the forth-order fractional Fourier transform moments. Based on rotated short-time Fourier transform, the proposed pseudo Wigner-Ville distribution preserves the WVD auto-terms and cancels the cross-terms and the noise. The impulse signal is transformed from time-frequency domain to time domain and using inverse fractional Fourier transform to separate multi-component chirp signal. Simulation results show the method can separate multi-component chirp signal with additive white Gaussian noise and is beneficial for parameter estimation.
出处 《计算机工程与应用》 CSCD 2014年第4期211-214,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075008)
关键词 多分量CHIRP信号 短时分数阶傅里叶变换 伪魏格纳分布 信号分离 multi-component Chirp signal short-time fractional Fourier transform pseudo Wigner-Ville distribution signal separation
  • 相关文献

参考文献4

二级参考文献33

  • 1杜雨洺,杨建宇.基于FRFT的LFMCW雷达加速动目标检测与参数估计[J].电波科学学报,2005,20(6):815-818. 被引量:18
  • 2孙晓兵,保铮.分数阶Fourier变换及其应用[J].电子学报,1996,24(12):60-65. 被引量:29
  • 3熊波,李国林,于静.强噪声环境下的多分量LFM信号识别[J].信号处理,2007,23(2):298-300. 被引量:4
  • 4Mark J W, ZHUANG Weihua. Wireless Communications and Networking[M]. London: Pearson Education, 2003.
  • 5Roger Vines. Use of polarization,angle,height and fregueney diversity during multipatb fading to improve telemetry reception aboard ship[C]// Proceedings of the International Telemetering Conference. Las Vegas, 1991: 585- 596.
  • 6Ozaktas H M, MENdlovic D. Fractional Fourier Transforms with Applications in Optics and Signal Processing [M]. New York: John Wiley & Sons, 2000.
  • 7Ozaktas H M. Digital computation of the fractional Fourier transform[J].IEEETrans, 1996, 44(9): 2141-2150.
  • 8Soo-Chang Pei, DING Jianjiun. Closed-form discrete fractional and affine Fourier transforms [J]. IEEE Trans, 2000, 48(5) : 1338- 1353.
  • 9Soo-Chang Pei, DING Jianjiun. Relations between fractional operations and time-frequency distributions and their applications [J]. IEEE Trans, 2001, 49(8) : 1638 - 1655.
  • 10Ristic B, Boashash B. Comments on the cramer-rao lower bounds for signals with constant amplitude and polynomial phase [J]. IEEE Trans, 1998, 46(6): 1708-1709.

共引文献39

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部