期刊文献+

一种改进的基于神经网络的WSN数据融合算法 被引量:8

Improvement of Data Aggregation of Wireless Sensor Networks Using Artificial Neural Networks
在线阅读 下载PDF
导出
摘要 为降低无线传感网络的能量消耗,提出了一种基于神经网络的数据融合改进算法(NBPNA),该算法将无线传感网络的分簇路由协议与BP神经网络结合起来,通过神经网络方法对簇内节点采集到的信息进行数据拟合,提取训练拟合好的权值与阈值,把其作为信息融合值传输;同时再通过将上一次拟合好的权值与阈值赋予下一次网络训练来减少神经网络的训练步数,减少网络训练所需的耗能;通过实验验证,该算法可有效减少网络通信量,降低节点能耗,延长网络寿命,同时还验证了本算法在环境监测等方面的可行性和有效性。 To save energy for wireless sensor networks (WSNs), NBPNA, a new data aggregation algorithm based on back--propaga- tion networks was proposed, which integrates a three--layer BP neural network with clustering routing protocol. We use it for data fusion in WSNs, and then send the weight and threshold rather than the raw data monitored from sensors to the sink, at the same time, using the weight and threshold in the last fitting as the input of the new fitting, the number of Neural Network training steps can be reduced greatly. Simulation results show that the proposed algorithm can effectively reduce data transmissions, so as to achieve energy efficiency in WSNs, and the lifetime of the network is prolonged. At the same time, this algorithm is also verified the feasibility and effectiveness of environmen- tal monitoring, etc.
作者 连方圆 白静
出处 《计算机测量与控制》 北大核心 2014年第2期476-479,共4页 Computer Measurement &Control
基金 国家自然科学基金赞助项目(61072087) 山西省科技攻关项(20120313013-6)
关键词 无线传感网络 数据融合 神经网络 权值 阈值 wireless sensor networks data aggregation artificial neural networks weight and threshold
  • 相关文献

参考文献13

二级参考文献53

  • 1沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600. 被引量:267
  • 2李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:374
  • 3王珏明,顾超,钱莉.无线传感网之能量篇[J].计算机应用与软件,2007,24(1):85-86. 被引量:7
  • 4葛艳,王薇,闫传军,吴鹏,任志考.基于模糊神经网络的CDMA网络故障诊断方法[J].北京邮电大学学报,2007,30(1):123-126. 被引量:3
  • 5Stoianov I, Nachman L, Madden S, et al. PIPENET. a wireless sensor network for pipeline monitoring [ C ] // 2007 International Symposium on Information Processing in Sensor Networks. Massachusetts. ACM Press, 2007: 264-273.
  • 6Feng D C, Dias P J M. Study on information fusion based on wavelet neural network and evidence theory in fault diagnosis [ C ] //2007 International Conference on Electronic Measurement and Instruments. Xi' an: IEEE Press, 2007: 3522-3526.
  • 7Luis E O, Beatriz M T. A method to estimate emission rates from industrial stacks based on neural networks[J]. Chemosphere, 2004, 57(7): 691-696.
  • 8Denoeux T, Masson M. EVCLUS: evidential clustering of proximity data[J]. IEEE Systems, Man and Cybernetics B, 2004, 34(1). 95-109.
  • 9Laha A, Pal N R, Das J. Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory[J]. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(6) : 1633-1041.
  • 10Zhao Wentao, Fang Tao, Jiang Yan. Data fusion using improved Dempster-Shafer evidence theory for vehicle detection[C]//2007 International Conference on Fuzzy Systems and Knowledge Discover. Haikou: IEEE Press, 2007: 487-491.

共引文献483

同被引文献58

  • 1罗俊海,杨阳.基于数据融合的目标检测方法综述[J].控制与决策,2020,35(1):1-15. 被引量:30
  • 2潘正华.模糊推理算法的数学原理[J].计算机研究与发展,2008,45(z1):165-168. 被引量:15
  • 3傅剑锋,雍静.基于数据融合技术的火灾探测算法[J].低压电器,2007(12):22-24. 被引量:3
  • 4Gomez C, Paradells J. Wireless home automation networks: a survey of archilectures and technologies [J]. Consumer communica- tions and networking, 2010, (6): 92-101.
  • 5Khaleghi B, Khamis A, Karray F O, et al. Muhisensor data fusion: A review of the state - of - the - art [J]. Information Fusion, 2013, 14 (1): 28-44.
  • 6Lu Z Q, Tan S L, Biswas J. D2F: A Routing Protocol for distribu- ted data fusion in wireless sensor networks [J]. Wireless Pers Corn- mum, 2013, 70: 391-410.
  • 7Zhou Q, Ning Y P, Zhou Q Q, et al. Structural damage detection method based on random forests and data fusion [J]. Structure health monitoring, 2013, 12 (1): 48-58.
  • 8Tamaki K, Kaneko S. Multiparametric virtual metrology model building by job-shop data fusion using a markov chain monte carlo method [J]. Semiconductor Manufacturing, 2013, 3 (26):319 - 327.
  • 9Heinzelman W, Chandrakasan A, Balak rishnanH. Energy-efficientcommunication protocol for wireless microsensor networks [A]. Proceedings of the 33rd Hawaii International Conference on System Science [C]. 2000.
  • 10Huang L C, Chang H C, Chen C C, et al. A ZigBee based monitoring and protection system for building electrical safety [J]. Energy and Buildings, 2011, 43 (6): 1418-1426.

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部