期刊文献+

基于小波矩的自主式水下机器人目标识别 被引量:2

Object recognition system for an autonomous underwater vehicle based on the wavelet invariant moment
在线阅读 下载PDF
导出
摘要 由于水体对可见光的衰减和散射较强,为克服传统CCD摄像机所得图像的低对比度、以及低信噪比的缺陷,提出以距离选通激光成像设备和前视声呐为传感器建立水下目标识别系统。通过前视声呐图像获取目标的距离信息,自主调节激光成像设备的接收摄像机与目标的距离,克服了水下机器人的距离选通激光图像自动采集的困难。对传统小波矩进行改进,获得反映目标全局和局部信息的具有旋转、平移、缩放不变性的小波矩,通过类内特征的均值和方差建立了特征选择模型。以特征选择后的小波矩作为广义回归神经网络GRNN的输入向量,对6类水池实测目标进行识别。试验结果表明建立的自主式水下机器人的目标识别系统具有较好的识别率,验证了所建系统的有效性和可行性。 Water has serious effects on the attenuation and scattering of visible light. In order to overcome the de-fects of the images captured by a conventional CCD camera with low contrast and a low signal-to-noise ratio, it is proposed that an underwater object recognition system be established with the underwater laser gated system and the forward looking sonar as the sensor. Through the image obtained by the forward looking sonar, the object distance information may be gained, the distance between the receiving camera of the laser imaging system and the object may be autonomously regulated, so as to overcome the difficulty of automatic acquisition for the range-gated laser image of the underwater vehicle. The conventional wavelet moment is improved to acquire a wavelet moment with the properties including rotation, horizontal movement and invariant scaling, which reflects the global and local in-formation of the object. A feature selection model is proposed for the mean and variance of the inside-category fea-ture, the wavelet moments after feature selection are used as the input vector of the generalized regression neural network GRNN for the recognition of six types of pool actually-measured objects. The test results show that the es-tablished object recognition system of the autonomous underwater vehicle has an excellent recognition rate and as a result the established system is effective and feasible.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第2期148-154,共7页 Journal of Harbin Engineering University
基金 国家863计划资助项目(2011AA09A106) 国家自然科学基金资助项目(51009040\E091002) 中央高校基本科研业务费资助项目(HEUCF110111) 中国博士后基金资助项目(2012M510928) 黑龙江省博士后基金资助项目(LBH-Z11205)
关键词 目标识别 前视声呐 距离选通激光成像系统 小波矩 特征选择 object recognition forward looking sonar underwater laser gated system wavelet moment feature se-lection
  • 相关文献

参考文献16

二级参考文献87

共引文献113

同被引文献20

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部