期刊文献+

基于二阶差分滤波器的水下目标纯方位角跟踪 被引量:1

Research on second order divided difference filter algorithm for underwater target bearing-only tracking
在线阅读 下载PDF
导出
摘要 针对被动单声呐平台对水下目标的纯方位角跟踪问题,提出基于二阶差分滤波器的水下目标纯方位角跟踪方法。采用二阶Stirling插值公式对系统模型中的非线性项进行线性化,使系统误差协方差矩阵正定,保证了滤波算法的稳定性,避免了传统扩展卡尔曼滤波算法由于需要计算Jacobian矩阵而导致计算复杂、难以应用的问题。建立了被动声呐平台测量模型和水下目标的运动学模型,并应用Monte Carlo方法完成仿真实验。仿真结果表明,基于二阶差分滤波器的水下目标纯方位角跟踪算法具有较快速准确的跟踪响应,通过RMSE概率统计方法进一步验证了这种方法具有较高的估计精度。 In order to deal with the problems concerning the single passive sonar based underwater target bearingonly tracking, the underwater target bearing-only tracking algorithm based on the second order divided difference filter has been proposed. This algorithm uses the second order Stirling interpolation formula to linearize the nonlinear terms of the system models, which makes the system error covariance matrix positively definite, ensures the stability of the filtering algorithm, and makes it easy to implement a comparison with the traditional extended Kalman filtering algorithm due to the avoidance of calculating the Jacobian matrix. The underwater target kinematics model and the passive sonar measurement model were established, and the Monte Carlo method was applied to complete the simulation experiment. The simulation results show that the second order divided difference filter based on the underwater target bearing-only tracking algorithm has a fast and accurate tracking response. The RMSE probability statistical method was used to further validate that this method has a higher estimation precision.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第1期87-92,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(E091002/50979017) 教育部高等学校博士学科点专项科研基金资助项目(20092304110008) 哈尔滨市科技创新人才(优秀学科带头人)研究专项基金资助项目(2012RFXXG083) 教育部新世纪优秀人才支持计划基金资助项目(NCET-10-0053)
关键词 水下目标 纯方位角跟踪 二阶差分滤波器 扩展卡尔曼滤波器 MONTE Carlo仿真 underwater target bearing-only tracking second-order divided difference filter extended Kalman filter Monte Carlo simulation
  • 相关文献

参考文献4

二级参考文献24

共引文献30

同被引文献18

  • 1ITO K, XIONG Kaiqi. Gaussian filters for nonlinear filtering problems [J]. IEEE transactions on automatic control, 2000, 45(5) : 910-927.
  • 2FORBES J R. Extended Kalman filter and sigma point filter approaches to adaptive filtering [ C ]//AIAA Guidance, Navigation, and Control Conference. Toronto, Canada, 2010: 7748-7763.
  • 3JULIER S J, UHLMANN J K. Unscented filtering and non- linear estimation [J]. Proceedings of the IEEE, 2004, 92 ( 3 ) : 401-422.
  • 4LIU Xing, JIANG Shoushan. Research on target tracking based on unscented Kalman filter [J].Sensors & transducersjournal, 2013, 153(6): 13-21.
  • 5ARASARATNAM 1, HAYKIN S, ELLIOTF R J, Discrete- time nonlinear filtering algorithms using gauss-hermite quad- rature[J]. Proceedings of the IEEE, 2007, 95 (5) : 953-977.
  • 6JIA Bin, XIN Ming, CHENG Yang. Sparse Gauss-Hermite quadrature filter with application to spacecraft attitude esti- mation[J]. Journal o[ guidance, control, and dynamics, 2011, 34(2): 367-379.
  • 7JIA Bin, XIN Ming, CHENG Yang. Sparse-grid quadrature nonlinear filtering[J]. Automatica, 2012, 48(2): 327-341.
  • 8ARASARATNAM I, HAYKIN S. Cubature Kahnan filters [J]. IEEE transactions on automatic control, 2009, 54 (6) : 1254-1269.
  • 9ARASARATNAM I, ftAYKIN S, HURD, T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations [J]. IEEE transactions on signal process- ing, 2010, 58( 10): 4977-4993.
  • 10FERNANDEZ-PRADES C, VILA-VALLS J. Bayesian non- linear filtering using quadrature and cubature rules applied to sensor data fhsion for positioning [ C ]//IEEE Interna- tional Conference on Communications (ICC). Cape Town, South Africa, 2010: 1-5.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部