期刊文献+

主成分回归残差神经网络校正算法用于近红外光谱快速测定汽油辛烷值 被引量:29

Principal Component Regression Residual Artificial Neural Network Calibration Algorithm Applied in Near Infrared Fast Measurement of Gasoline Octane Number
在线阅读 下载PDF
导出
摘要 根据汽油辛烷值预测体系本身的非线性特点 ,提出主成分回归残差神经网络校正算法(principalcomponentregressionresidualartificialneuralnetwork ,PCRRANN)用于近红外测定汽油辛烷值的预测模型校正。该方法结合了主成分回归算法 (PC) ,与经典的线性校正算法PLS(PartialLeastSquare) ,PCR ,以及非线性PLS(NPLS ,Non linearPLS)等相比 ,预测能力有明显的改善。 A novel calibration algorithm, PCRRANN (principal component regression residual artificial neural network) method, was proposed based on the intrinsic non-linearity of the prediction of gasoline octane number, and then applied to the calibration of the prediction model of the near infra-red measurement of gasoline octane number. The method combined the linear calibration ability of the pricipal component regression (PCR) method and the excellent non-linear approximating ability of artificial neuralnetwork using the residual of PCR calibration as target signal and the PCR scores as input signal of the neuralnetwork respectively. Compared with the classical linear algorithms such as the PLS (partial least squares), PCR and NPLS (Non-linear PLS), the proposed method showed obvious improvement in prediction ability. The effects of the number of principal components of PCR part and some training parameters on the prediction model were also discussed.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2001年第1期87-91,共5页 Chinese Journal of Analytical Chemistry
关键词 主成分回归 神经网络 汽油 辛烷值 近红外光谱 测定 principal component regression residual neural network gasoline octane number near infrared spectrocopy
  • 相关文献

参考文献2

共引文献9

同被引文献492

引证文献29

二级引证文献366

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部