期刊文献+

基于神经网络的数字识别技术研究 被引量:1

Research on Number Recognition Based on Neural Network
在线阅读 下载PDF
导出
摘要 将图像的像素特征与矩特征结合,构建了神经网络分类器,利用提取的特征向量对分类器进行了训练和测试。将图像二值化,并归一化为16*16大小,提取了其每个像素点的0、1特征共16*16=256维,图像的网格特征13维,及Hu矩特征7维,一共276维特征。建立了BP神经网络分类器,分别使用最速下降BP算法、动量BP算法、学习率可变BP算法对BP神经网络分类器进行了训练,得出了在相同条件下学习率可变BP算法训练时间短,收敛快的结论。建立了PNN神经网络分类器,与BP神经网络分类器性能进行比较,实验结果表明,PNN神经网络分类器性能更好。 Combining the image pixel feature and torque feature, this paper built neural network classifier, and extracts feature classifier for training and testing. The image which was binarization, was normalized to a size of 16 * 16, and extracts its each pixel 0 1 feature, total of 16 * 16 = 256d, 13 image grid features 13d, 7d Hu moment feature, total of 276d. Established the BP neural network classifier, the paper gets the results that vector under the condition of the same variable BP algorithm training time is short, fast convergent, using the steepest descent of BP algorithm and momentum BP algorithm, BP algorithm of vector variable, respectively, to train the BP neural network classifier. Then, the paper established PNN neural network classifier, and it was compared with BP neural network classifier performance. At last, the paper concluded that PNN neural network classifier in the process of the experiment show the better performance.
作者 刘锦
出处 《软件导刊》 2014年第2期58-60,共3页 Software Guide
关键词 神经网络 数字识别 特征提取 Feature Extraction Neural Network Identify
  • 相关文献

参考文献3

二级参考文献21

  • 1何国金,胡德永.卫星遥感数据的信息论理解[J].地质科技情报,1997,0(S1):44-48. 被引量:3
  • 2包健,赵建勇,周华英.基于BP网络曲线拟合方法的研究[J].计算机工程与设计,2005,26(7):1840-1841. 被引量:22
  • 3张圣楠,郭文义,肖力墉.基于MATLAB的BP神经网络的设计与训练[J].内蒙古科技与经济,2005(17):95-98. 被引量:21
  • 4卢晶,赵远东,杨雄.基于补偿模糊神经网络的洗衣机仿真研究[J].微计算机信息,2006,22(04S):295-298. 被引量:4
  • 5田华 遇广修.BP算法的实现.教育经济研究,:194-194.
  • 6Bischof H, Leonardis A. Finding Optimal Neural Networks for Land Use Classification. IEEE Tran. on Geoscience and Remote Sensing,1998,36(1):337~341.
  • 7Muvai H. Remote Sensing Image Analysis Using a Neural Network and Knowledge-based Processing. International Journal of Remote Sensing,1997,18(4):811~828.
  • 8Venkatesh Y V, Raja S K. On the Classification of Multispectral Satellite Images Using the Multilayer Perceptron. Pattern Recognition, 2003,36:2 161~2 175.
  • 9McClellan G E, DeWitt R N, Hemmer T H, et al. Multispectral Image-processing with a Three-layer Back-propagation Network. International Joint Conference on Neural Networks, Washington D C,1989.
  • 10Zhou J, Civco D. Using Genetic Learning Neural Networks for Spatial Decision Making in GIS. Photogrammetric Engineering and Remote Sensing,1996,62(11):1 287~1 295.

共引文献99

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部