期刊文献+

基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究 被引量:4

Robust Occlusion Pattern Recognition Algorithm Based on Block Sparse Recursive Residuals Analysis
在线阅读 下载PDF
导出
摘要 针对如何在未知类别的情况下自动检测出遮挡区域,然后在克服遮挡影响的基础上提高识别算法的鲁棒性问题,提出基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法.该算法首先将待测样本分为上下两部分,并分别用对应块的训练样本进行稀疏表示,找出稀疏度更高的块及对应的稀疏解,并将更稀疏前N个解推广到另一个块中,重构测试样本.然后根据重构测试样本与原测试样本的残差推测遮挡像素.考虑到遮挡区域的连续性,利用形态学操作对推测的遮挡区域进行规则化处理并得到加权矩阵.最后利用加权矩阵对测试样本和训练样本进行整体加权归一化,再利用全局稀疏表示进行最终的分类判决.在AR、Yale B及MNIST上的遮挡仿真实验证明该方法不但可大致确定遮挡区域,还可提高遮挡图像识别的性能. A robust occlusion pattern recognition algorithm is proposed which considers how to detect occluded region automatically with unknown occlusion pattern and conquers the influence of occluded region to improve the robustness of the recognition algorithm. Firstly, the test image is divided into up module and down module. Next, the sparse representations are computed respectively. Then, the module with higher sparsity and the corresponding sparse solution are found. The test image is reconstructed using this module and the N largest coefficients. According to the residual of original test image and reconstruction image, the occluded pixels can be confirmed coarsely. Considering the continuity of occluded region, the coarsely confirmed occluded region is regularized by morphological operation and gets the weighting matrix. Finally, the test and training set are weighted and normalized by using this weighting matrix and then the final decision is made by using global sparse representation. The experimental results on AR,Yale B and MNIST databases verify that the proposed method can detect the occluded region roughly, and the effectiveness and the robustness of the proposed method can be observed obviously.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第1期70-76,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61071199) 河北省自然科学基金项目(No.F2010001297) 第二批中国博士后基金特别项目(No.200902356)资助
关键词 模式识别 稀疏表示 遮挡图像 递推残差 形态学操作 Pattern Recognition, Sparse Representation, Occlusion Image, Recursive Residual,Morphological Operation
  • 相关文献

参考文献15

  • 1Wright J,Yang A Y,Ganesh A. Robust Face Recognition via Sparse Representation[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(02):210-227.
  • 2Zhang Lei,Yang Meng,Feng Xiangchu. Sparse Representation or Collaborative Representation:Which Helps Face Recognition[A].Bar-celona,Spain,2011.471-478.
  • 3Xu Yong,Zuo Wangmeng,Fan Zizhu. Supervised Sparse Represen-tation Method with a Heuristic Strategy and Face Recognition Experi-ments[J].{H}NEUROCOMPUTING,2012,(01):125-131.
  • 4Wagner A,Wright J,Ganesh A. Towards a Practical Face Recognition System:Robust Registration and Illumination by Sparse Representation[A].Miami,USA,2009.597-604.
  • 5Yang Meng,Zhang Lei,Zhang D. Efficient Misalignment-Robust Representation for Real-Time Face Recognition[A].Firenze,Italy,2012.850-863.
  • 6Yang Meng,Zhang Lei. Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary[A].Heraklion,Greece,2010.448-461.
  • 7Chen C F,Wei C P,Wang Y C F. Low-Rank Matrix Recovery with Structural Incoherence for Robust Face Recognition[A].Providence,USA,2012.2618-2625.
  • 8Chen Zhaohua,Xu Tingrong,Han Zhiyuan. Occluded Face Recog-nition Based on the Improved SVM and Block Weighted LBP[A].Hangzhou,China,2011.118-122.
  • 9Yang Meng,Zhang D,Jian Yang. Robust Sparse Coding for Face Recognition[A].Colorado Springs,USA,2011.625-632.
  • 10Lai Jian,Jiang Xudong. Modular Weighted Global Sparse Repre-sentation for Robust Face Recognition[J].IEEE Signal Processing Let-ters,2012,(09):571-574.

二级参考文献17

  • 1杜成,苏光大.用于人脸识别的正面人脸图像眼镜摘除[J].清华大学学报(自然科学版),2005,45(7):928-930. 被引量:11
  • 2Saito Y, Kenmochi Y, Kotani K. Estimation of eyeglassless facial images using principal component analysis [C]//Proc of IEEE ICIP'99. Piscataway, NJ: IEEE, 1999:197-201.
  • 3Wu C, Liu C, Shum H Y, et al. Automatic eyeglasses removal from face images [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3): 322-336.
  • 4Park J S, Oh Y H, Ahn S C, et al. Glasses removal from facial image using recursive error compensation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 805-811.
  • 5Wu J, Trivedi M M. A regression model in tensorPCA subspace for face image super-resolution reconstruction [C]// Proc of the 18th Int Conf on Pattern Recognition(ICPR'06). Piscataway, NJ: IEEE, 2006:627-630.
  • 6Colombo A, Cusano C, Schettini R. Detection and restoration of occlusions for 3D face recognition [C]//Proc of IEEE ICME'06. Piscataway, NJ: IEEE, 2006:1541-1544.
  • 7Hwang B W, Lee S W. Reconstruction of partially damaged face images based on a morphable face model [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(3) : 365-372.
  • 8Smet M D, Fransens R, Gool L V. A generalized EM approach for 3D model based face recognition under occlusions[C] //Proc of IEEE CVPR'06. Los Alamitos, CA: IEEE Computer Society, 2006:1423-1430.
  • 9Tsuda K, Ratsch G. Image reconstruction by linear programming [J]. IEEE Trans on Image Processing, 2005, 14(6) : 737-744.
  • 10Mo Z, Lewis J P, Neumann U. Face inpainting with local linear representations [C]//Electronic Proceedings of British Machine Vision Conference. Piscataway, NJ: IEEE, 2004: 399-407.

共引文献9

同被引文献64

  • 1周明,严正,倪以信,李庚银.含误差预测校正的ARIMA电价预测新方法[J].中国电机工程学报,2004,24(12):63-68. 被引量:34
  • 2赵建,邵永革,黄炯,杨静宇.基于神经网络的股市预测[J].计算机研究与发展,1996,33(9):692-697. 被引量:10
  • 3王惠文,孟洁.多元线性回归的预测建模方法[J].北京航空航天大学学报,2007,33(4):500-504. 被引量:261
  • 4Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 5Yang A Y, Zhou Z H, Ma Y, et al. Towards a Robust Face Recog- nition System Using Compressive Sensing// Proc of the 11 th Annual Conference of the International Speech Communication Association. Makuhari, Japan, 2010:2250-2253.
  • 6Zhang L, Yang M, Feng X C, et al. Collaborative Representation Based Classification for Face Recognition [ EB/OL]. [ 2014-06- 30]. http://arxiv, org/ftp/arxiv/papers/1204/1204. 2358. pdf.
  • 7Deng W H, Hu J N, Guo J. Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(9) : 1864-1870.
  • 8Majumdar A, Ward R K. Classification via Group Sparsity Promo- ting Regnlarization// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Taibei, China, 2009 : 861-864.
  • 9Elhamifar E, Vidal R. Robust Classification Using Structured Sparse Representation//Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011 : 1873-1879.
  • 10Huang J Z, Zhang T. The Benefit of Group Sparsity. The Annals of Statistics, 2010, 38(4) : 1978-2004.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部