期刊文献+

基于全局与局部特征的视频索引模型 被引量:7

Indexing Video Using Global and Local Features
在线阅读 下载PDF
导出
摘要 视频是在网络上需求日益增多的多媒体信息 ,由于视频量的巨大以及结构的线形性 ,因而越来越多的引起研究者的重视 .其相应的检索方式与针对文本信息采用的关键字检索有很大不同 .文中将视频的特征分成局部和全局两种 ,并系统阐述了如何提取视频局部和全局特征 。 Video is the multimedia information needed more on Internet. For its massive volume and linear structure, video has received more and more emphasis by researchers. The corresponding retrieval method is different from traditional key word retrieval for text information. This paper divides the video features into two types—local feature and global feature, and systematically expatiates how to extract local and global features from video and how to establish local and global feature based model for video retrieval.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2000年第12期911-916,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金:(69803009)
关键词 全局特征 局部特征 信息检索 视频索引模型 semantic key word retrieval local and global feature based model for video retrieval global feature local feature
  • 相关文献

参考文献2

二级参考文献13

  • 1庄越挺.智能多媒体信息分析与检索的研究.浙江大学博士论文[M].,1998..
  • 2庄越挺,计算机研究与发展,1999年,36卷,5期,540页
  • 3庄越挺,博士学位论文,1998年
  • 4Rai Y,Proc of First International Workshop on Image Databases and Multimedia Search,1996年,456页
  • 5Ma W Y,Proc IEEE Int Conf Impage Proc,1995年,309页
  • 6Chang S K,IEEE Trans Knowledge Data Engineering,1992年,4卷,431页
  • 7Chang S K,IEEE Trans Software Engineering,1988年,14卷,681页
  • 8Chang S K,IEEE Computer,1981年,30卷,11期,13页
  • 9Hu M K,IRE Trans Information Theory,1962年,8卷,459页
  • 10Yong Rui,Proc IEEE Conf on Multinedia Computing and Systems,1998年,54页

共引文献58

同被引文献84

  • 1张洪德,刘雨,唐波.基于内容的视频检索技术研究[J].电视技术,2001,25(6):30-33. 被引量:9
  • 2章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 3边肇棋 张学工.模式识别.第2版[M].北京:清华大学出版社,1999.241-244.
  • 4Hauptmann A,Yan R,Lin W H,et al.Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news[J].IEEE Transactions on Multimedia,2007,9(5):958-966.
  • 5Cao J,Zhang Y D,Feng B L,et al.TRECVID 2008 search task by MCG-ICT-CAS[R].Gaithersburg:TRECVID Workshop,2008.
  • 6Cao J,Jing H F,Ngo C W,et al.Distribution-based concept selection for concept-based video retrieval[C] //Proceedings of ACM International Conference on Multimedia,Beijing,2009:19-24.
  • 7Haubold A,Natsev A P,Naphade M R.Semantic multimedia retrieval using lexical query expansion and model-based reranking[C] //Proceedings of IEEE International Conference on Multimedia and Expo,Toronto,2006:1761-1764.
  • 8Te(s)i(c),Natsev A P,Smith J R.Cluster-based data modeling for semantic video search[C] //Proceedings of ACM International Conference on Image and Video Retrieval,Amsterdam,2007:595-602.
  • 9Wei X Y,Ngo C W.Fusing semantics,observability,reliability and diversity of concept detectors for video search[C] //Proceedings of ACM International Conference on Multimedia,Vancouver,2008:26-31.
  • 10Zhou D Y,Weston J,Gretton A,et al.Ranking on data manifolds[C] //Proceedings of Annual Conference on Neural Information Processing Systems,Cambridge,2003:169-176.

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部