期刊文献+

基于期望首达时间的形状距离学习算法 被引量:2

Learning Shape Distance Based on Mean First-passage Time
在线阅读 下载PDF
导出
摘要 由于逐对形状匹配不能很好地反映形状间相似度,因此需要引入后期处理步骤提升检索精度.为了得到上下文敏感的形状相似度,本文提出了一种基于期望首达时间(Mean first-passage time,MFPT)的形状距离学习方法.在利用标准形状匹配方法得到距离矩阵的基础上,建立离散时间马尔可夫链对形状流形结构进行分析.将形状样本视作状态,利用不同状态之间完成一次状态转移的平均时间步长,即期望首达时间,表示形状间的距离.期望首达时间能够结合测地距离发掘空间流形结构,并可以通过线性方程进行有效求解.分别对不同数据进行实验分析,本文所提出的方法在相同条件下能够达到更高的形状检索精度. Since pairwise shape similarity analysis can not measure the shape distance accurately, post-processing steps are introduced into shape matching process for increasing retrieval scores. In this paper, a novel shape distance based on mean first-passage time (MFPT) is proposed for resolving the problem of learning context-sensitive similarity. Given the distance matrix computed by a distance function, discrete-time Markov chains are constructed for analyzing the underlying structure of the manifold formed by shapes. With each shape in the database regarded as a state, the mean number of steps for transition between two states, named mean first-passage time, is used to measure the shape distance. The mean first-passage time induced by geodesic paths can capture the shape manifold structure, and it can be obtained by solving the linear equations. Experimental results on different databases show that shape retrieval results can be effectively achieved by using the proposed method.
作者 郑丹晨 韩敏
出处 《自动化学报》 EI CSCD 北大核心 2014年第1期92-99,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61374154 61074096)资助~~
关键词 形状匹配 形状距离学习 相似度矩阵 离散时间马尔可夫链 期望首达时间 Shape matching, learning shape distance, affinity matrix, discrete-time Markov chain, mean first-passagetime (MFPT)
  • 相关文献

参考文献18

  • 1丁险峰,吴洪,张宏江,马颂德.形状匹配综述[J].自动化学报,2001,27(5):678-694. 被引量:88
  • 2周瑜,刘俊涛,白翔.形状匹配方法研究与展望[J].自动化学报,2012,38(6):889-910. 被引量:85
  • 3Belongie S,Malik J,Puzicha J. Shape matching and object recognition using shape contexts[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(4):509-522.
  • 4Ling H B,Jacobs D W. Shape classification using the innerdistance[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(2):286-299.
  • 5Bai X,Yang X W,Latecki L J,Liu W Y Tu Z W. Learning context-sensitive shape similarity by graph transduction[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(5):861-874.
  • 6Kontschieder P,Donoser M,Bischof H. Beyond pairwise shape similarity analysis[A].Berlin,Heidelberg:Springer-Verlag,2009.655-666.
  • 7Yang X W,Koknar-Tezel S,Latecki L J. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval[A].Miami,USA:IEEE,2009.357-364.
  • 8Egozi A,Keller Y,Guterman H. Improving shape retrieval by spectral matching and meta similarity[J].{H}IEEE Transactions on Image Processing,2010,(5):1319-1327.
  • 9Bai X,Wang B,Wang X G,Liu W Y,Tu Z W. Cotransduction for shape retrieval[A].Heraklion,Greece:Springer,2010.328-341.
  • 10Render S. A Guide to First-Passage Processes[M].{H}Cambridge:Cambridge University Press,2001.

二级参考文献114

  • 1陈晓飞,王润生.目标骨架的多尺度树表示[J].计算机学报,2004,27(11):1540-1545. 被引量:4
  • 2刘文予,刘俊涛.基于骨架树描述符匹配的物体相似性度量方法[J].红外与毫米波学报,2005,24(6):432-436. 被引量:6
  • 3Blum H. Biological shape and visual science (Part I). Jour- nal of Theoretical Biology, 1973, 38(2): 205-287.
  • 4Belongie S, Malik J, Puzicha J. Shape matching and ob- ject recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509--522.
  • 5Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798.
  • 6Ling H B, Jacobs D W. Using the inner-distance for classi- fication of articulated shapes. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). Washington, DC, USA: IEEE, 2005. 719-726.
  • 7Ling H B, Jacobs D W. Shape classification using the inner- distance. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007, 29(2): 286-299.
  • 8Biswas S, Aggarwal G, Chellappa R. Efficient indexing for articulation invariant shape matching and retrieval. In: Pro- ceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis, MN: IEEE, 2007. 1-8.
  • 9Grigorescu C, Petkov N. Distance sets for shape filters and shape recognition. IEEE Transactions on Image Processing, 2003, 12(10): 1274-1286.
  • 10Tu Z W, Yuille A. Shape matching and recognition: using generative models and informative features. In: Proceed- ings of the 8th European Conference on Computer Vision (ECCV). Prague, Czech Republic: Springer, 2004. 195-209.

共引文献165

同被引文献25

  • 1Hu R X, Jia W, Ling H B, Zhao Y, Gui J. Angular pat- tern and binary angular pattern for shape retrieval. IEEE Transactions on Image Processing, 2014, 23(3): 1118-1127.
  • 2Hong B W, Soatto S. Shape matching using multiscale inte- gral invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 151-160.
  • 3Hasanbelliu E, Sanchez G L, Principe J C. Information the- oretic shape matching. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2014, 36(12): 2436-2451.
  • 4BM X, Yang X W, Lateeki L J, Liu W Y, T Z W. Learn- ing context-sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010, 32(5): 861-874.
  • 5Yang X W, Koknar-Tezel S, Latecki L J. Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: Proceedings of the 2009IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 357-364.
  • 6Yang X W, Bai X, Latecki L J, Tu Z W. Improving shape retrieval by learning graph transduction. In: Proceedings of the 10th European Conference on Computer Vision. Mar- seille, France: Springer, 2008. 788-801.
  • 7Ling H B, Yang X W, Latecki L J. Balancing deformability and discriminability for shape matching. In: Proceedings of the llth European Conference on Computer Vision. Crete, Greece: Springer, 2010. 411-424.
  • 8Premachandran V, Kakarala R. Perceptually motivated shape context which uses shape interiors. Pattern Recog- nition, 2013, 46(8): 2092-2102.
  • 9Egozi A, Keller Y, Guterman H by spectral matching and meta tions on Image Processing, 2010 Improving shape retrieval similarity. IEEE Transac- 19(5): 1319-1327.
  • 10Yang X W, Prasad L, Latecki L J. Affinity learning with dif- fusion on tensor product graph. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2013, 35(1): 28--38.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部