期刊文献+

高速列车抗风的抽吸减载方法

Load-shedding method based on suction effect to improve wind drag of high-speed train
原文传递
导出
摘要 为了提高列车在大风中运行的安全性,利用抽吸气法控制列车绕流边界层分离,以减小横风气动力。以中国CRH型高速列车为原型,在车体内设计了腔室,并通过条缝与列车表面相连,使列车表面的绕流经列车表面条缝流入腔室内,形成抽吸效应。研究结果表明:抽吸气腔室和条缝的设置能够在列车高速行驶时产生低于车体外部绕流的压力,有效地控制边界层的分离和减小列车的横风气动力。条缝倾角对气动减载效果有明显影响,当条缝倾角为30°时,总阻力的减载幅度可达7.21%;头车、中间车与尾车的横向力分别减载4.85%、2.71%与90.48%;头车、中间车与尾车的升力分别减载8.21%、12.56%与7.69%;头车、中间车与尾车的倾覆力矩减载幅度分别为5.29%、8.84%与57.56%。条缝倾角对不同车段气动减载率的影响不同,尾车受条缝倾角影响的程度最大。 In order to improve the safety of train in crosswind, a new method for safety control using suction effect was discussed to control the separation of airflow boundary layers and to decrease the crosswind aerodynamic force on train. Taking CRH high-speed train of China as prototype, the pumping chambers were added in train body, and the outer surface of train was connected with pumping chambers by slots. When train was running at high speed, airflow was sucked into pumping chambers through slots to form suction effect. Analysis result indicates that the installing of pumping chambers and slots can make the pressure inside train lower than its outside airflow pressure when train is running at high speed. The separation of airflow boundary layers can be effectively controlled. The crosswind aerodynamic force on train decreases. Slot inclination angle has significant effect on decreasing crosswind aerodynamic force. When inclination angle is 30%, the decrease of total resistance is 7.21%. The decrease of lateral force is 4. 85% for the first vehicle, 2.71% for the middle vehicle, and 90.48% for the last vehicle. The decrease of lift is 8.21% for the first vehicle, 12.56% for the middle vehicle, and 7.69% for the last vehicle. The decrease of overturning moment is 5.290% for the first vehicle, 8.84% for the middle vehicle, and 57. 56% for the last vehicle. Slot inclination angle has different effects on the aerodynamic load-shedding rates of different vehicles. The impact of slot inclination angle on the last vehicle is greatest. 3 tabs, 14 figs, 18 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2013年第6期36-46,68,共12页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51278032) 中国博士后科学基金项目(2013M530520) "十一五"国家科技支撑计划项目(2009BAG12A03C)
关键词 高速列车 风阻 减载方法 抽吸效应 气动特性 横风 high-speed train wind drag load-shedding method suction effect aerodynamic characteristic crosswind
  • 相关文献

参考文献18

  • 1BAKER C J. The simulation of unsteady aerodynamic cross wind forces on trains[J].{H}Journal of Wind Engineering and industrial Aerodynamics,2010,(02):88-99.
  • 2CARRARINI A. Reliability based analysis of the crosswind stability of railway vehicles[J].{H}Journal of Wind Engineering and industrial Aerodynamics,2007,(07):493-509.
  • 3ANDERSSONL E,HAGGSTROM J,SIMA M. Assessment of train-overturning risk due to strong cross-winds[J].Proceeding of the Institution of Mechanical Engineers Part F:Journal of Rail and Rapid Transit,2004,(03):213-223.
  • 4BOCCIOLONE M,CHELI F,CORRADI R. Cross-wind action on rail vehicles:wind tunnel experimental analy-ses[J].Journal of Wind Engineering and Industrial Aerody-namics,2008,(05):584-610.
  • 5WILSON J D,SWATERS G E,USTINA F. A perturbation analysis of turbulent flow through a porous barrier[J].{H}Quarterly Journal of the Royal Meteorological Society,1990,(494):989-1004.
  • 6SANTIAGO J L,MARTIN F,CUERVA A. Experimental and numerical study of wind flow behind windbreaks[J].{H}Atmospheric Environment,2007,(30):6406-6420.
  • 7姜翠香,梁习锋.挡风墙高度和设置位置对车辆气动性能的影响[J].中国铁道科学,2006,27(2):66-70. 被引量:51
  • 8刘凤华.不同类型挡风墙对列车运行安全防护效果的影响[J].中南大学学报(自然科学版),2006,37(1):176-182. 被引量:40
  • 9董香婷,党向鹏.风障对侧风作用下列车行车安全影响的数值模拟研究[J].铁道学报,2008,30(5):36-40. 被引量:20
  • 10任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究[J].铁道学报,2006,28(6):46-50. 被引量:94

二级参考文献61

  • 1高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响[J].铁道学报,2004,26(4):36-40. 被引量:119
  • 2高早明,许志达.风障与强横风作用下列车行车安全研究[J].山西建筑,2006,32(12):337-338. 被引量:1
  • 3陈艾荣,王达磊,庞加斌.跨海长桥风致行车安全研究[J].桥梁建设,2006,36(3):1-4. 被引量:25
  • 4任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究[J].铁道学报,2006,28(6):46-50. 被引量:94
  • 5FUJII T, MAEDA T, ISHIDA H. Wind-induced Accidents of Train/Vehicles and Their Measure in Japan ER~. Quarter- ly Report of Railway Technical Research Institute, 1999, (1) : 50-55.
  • 6ANDERSSON E, HAGGSTROM J, SIMA M. Assess- ment of Train-overturning Risk due to Strong Cross-winds EJ~. J. Rail and Rapid Transit, Proc. Instn Mech. Engrs, 2004,218,Part F:213- 223.
  • 7ORELLANO A, SCHODER M. On Side-wind Stability of High Speed Trains[J]. Vehicle System Dynamics Supple- ment, 2003,40 : 143-160. CARRARINI A. Reliability Based Analysis of the Cross- wind Stability of Railway VehiclesEJ~. Journal of Wind En- gineering and Industrial Aerodynamics, 2007,95:493-509.
  • 8CARRARINI A. Reliability Based Analysis of the Cross- wind Stability of Railway Vehicles[J~. Journal of Wind En- gineering and Industrial Aerodynamics, 2007,95:493-509.
  • 9Khier W, Breuer M, Durst F. Flow Structure Around Trains under Side Wind Conditions: a Numerical Study [J]. Computers & Fluids, 2000, (29) : 179-195.
  • 10中华人民共和国建设部,国家质量监督检验检疫总局.GB50009--200i建筑结构荷载规范[S].北京:中国建筑工业出版社,2002:72-73.

共引文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部