期刊文献+

基于仿射不变闭合区域和SURF的图像匹配算法 被引量:11

Image matching algorithm based on affine-invariant closed region and SURF
在线阅读 下载PDF
导出
摘要 针对现有基于自然特征的增强现实系统中图像匹配准确度低、计算量大和鲁棒性差的问题,提出了一种基于仿射不变闭合区域和SURF(speeded-up robust features)的图像匹配方法。对输入的图像首先利用灰度直方图均衡进行图像增强得到二值化的图像,提取图像中的闭合区域作为图像的仿射不变区域,然后运用SURF检测算法提取闭合区域的图像特征描述,最后使用SURF双向匹配算法实现图像的匹配。实验结果表明,图像匹配的准确度有很大程度的提升,同时计算耗时更少;提出的方法能够满足增强现实系统的要求。 To solve the problem of low image matching accuracy, large amount of calculation and low robustness of the object on existing augmented reality system based on natural features, this paper proposed a new image matching algorithm based on affine-invariant closed region and SURF. First, the input image with histogram equalization for image enhancement to obtain a binary image and extracted the closed region in the image as the image of the affine invariant region. Second, it used SURF detection algorithm to extract the image of the closed region feature description. Finally, it finished the procedure of image matching using bidirectional matching with SURF algorithm. Experiment results indicate that the image matching accuracy largely improved while calculations consumed less time. The proposed method can meet the requirements of augmented reality systems.
出处 《计算机应用研究》 CSCD 北大核心 2014年第1期295-298,共4页 Application Research of Computers
基金 国家科技支撑计划课题(2012BAD32B04) 高等学校博士学科点专项科研基金资助项目(20120062110012)
关键词 图像匹配 特征匹配 闭合区域 仿射不变性 双向匹配 image matching feature matching closed area affine invariant bidirectional matching
  • 相关文献

参考文献10

  • 1ZULIANI M, BERTELLI L, KENNEY C S, et al. Dnmas, curve de- scriptors and affine invariant region matching[ J]. Image and Vision Oomputing, 2008,26 ( 3 ) :347- 360.
  • 2SHIN D,TJAHJADI T. Clique descriptor of affine invariant regions for robust wide baseline image matching [ J ]. Pattern Recognition, 2010,43( 1 ) :3261-3272.
  • 3赵璐璐,耿国华,李康,何阿静.基于SURF和快速近似最近邻搜索的图像匹配算法[J].计算机应用研究,2013,30(3):921-923. 被引量:77
  • 4GUI Yang, SU Ang, DU Jing. Point-pattern matching method using SURF and shape context [ J]. Optik,2013 ,124( 14 ) : 1869-1873.
  • 5ZHANG Wei, WU Q M J, WANG C, uang-hui, et al. hnage matching using enclosed region detector[ J ]. Journal of Visual Communica- tion and Image Representation ,2010,21 ( 1 ) :271-282.
  • 6陈秀新,贾克斌.基于连通区域的仿射不变区域提取方法[J].计算机工程,2011,37(20):18-20. 被引量:3
  • 7VINCENT E,LAGANIERE R. Detecting and matching feature points [J]. Journal of Visual Communication and Image Representa- tion ,2005,16( 1 ) :38-54.
  • 8武英.基于双直方图均衡的自适应图像增强算法[J].计算机工程,2011,37(4):244-245. 被引量:32
  • 9杨帆,邓振生.直方图均衡化与SURF重构的图像特征提取方法[J].计算机工程与应用,2013,49(10):188-190. 被引量:8
  • 10BAY H, ESS A, TUYTELAARS T,et al. Speeded-up robust features (SURF) [ J]. Computer Vision and Image Understanding,2008, 110(3) :346-359.

二级参考文献29

  • 1费风长,方志军,曾卫明,章琳.基于区间映射规则的数字直方图处理[J].计算机工程,2006,32(19):217-220. 被引量:6
  • 2Kim Y T. Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization[J]. IEEE Transactions on Consumer Electronics, 1997, 43(1): 1-8.
  • 3Wang Yu, Chen Qian, Zhang B. Image Enhancement Based on Equal Area Dualistic Sub-image Histogram Equalization Method[J]. IEEE Transactions on Consumer Electronics, 1999, 45(1): 68-75.
  • 4Chen S D, Ramli A R. Minimum Mean Brightness Error Bi- Histogram Equalization in Contrast Enhancement[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 1310-1319.
  • 5Chen S D, Ramli A R. Scalable Brightness Preservation[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 1301-1309.
  • 6Lowe D G. Object Recognition from Local Scale-invariant Fea- tures[C]//Proc. of the International Conference on Computer Vision. Corfu, Greece: [s. n.], 1999: 1150-1157.
  • 7Lowe D G. Distinctive Image Features from Scale-invariant Key- points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 8Mikolajczyk K, Schmid C. An Affine Invariant Interest Point Detector[C]//Proc. of the 7th European Conference on Computer Vision. Copenhagen, Denmark: [s. n.], 2002: 128-142.
  • 9Matas J, Chum O, Urban M, et al. Robust Wide-baseline Stereo from Maximally Stable Extremal Regions[C]//Proc. of the British Machine Vision Conference. Cardiff, UK: [s. n.], 2002: 384-393.
  • 10Mikolajczyk K, Tuytelaars T, Schmid C, et al. A Comparison of Affine Region Detectors[J]. International Journal on Computer Vision, 2005, 65(1/2): 43-72.

共引文献115

同被引文献112

引证文献11

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部