期刊文献+

精英免疫克隆选择的协同进化粒子群算法 被引量:16

Co-Evolutionary Particle Swarm Optimization Algorithm Based on Elite Immune Clonal Selection
在线阅读 下载PDF
导出
摘要 提出一种精英免疫克隆选择的协同进化粒子群算法(Elite immune clonal selection co-evolutionary particle swarm optimization,EICS-CPSO).算法借鉴了协同进化思想和精英策略,基于精英种群与普通群体并行协同进化框架.高适应度的精英个体组成精英团体,运用自适应小波变异的免疫克隆选择算子对精英团体进行提升引导操作.普通种群间个体极值采用柯西交互学习机制提高微粒个体极值收敛性能;迁移操作进一步推进了整体信息共享与协同进化.实验结果表明该算法收敛精度快且全局搜索能力强,且具有较好的动态优化性能.实验分析表明该算法对参数不敏感,易于使用. A novel Elite immune clonal selection co-evolutionary particle swarm optimization algorithm (named ,EICS-CP-SO ) is proposed based on the elite strategy and co-evolutionary mechanism .The algorithm is consisting of one elite subpopulation and several normal subpopulations based on collaborative computing frame .The elite individuals having high fitness from each nor-mal subpopulation will be selected into the elite subpopulation ,during the evolution process .The elite subpopulation will be promot-ed by the immune clonal selection operator with adaptive wavelet mutation .Furthermore ,a simple Cauchy learning operator is uti-lized for accelerating the convergence speed of the pbest particles while the migration scheme is employed for the information ex-change between elite subpopulation and normal subpopulations .The performance of the proposed algorithm is verified through a suite of standard benchmark functions ,which shows a faster convergence and global search ability and also has a good dynamic optimiza-tion performance .Moreover ,the parameters of the EICS-CPSO are analyzed in experiments and the results show that EICS-CPSO is insensitive to parameters and easy to use .
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第11期2167-2173,共7页 Acta Electronica Sinica
基金 国家科技计划支撑项目(No.2012BAH09B02) 国家自然科学基金(No.61174140 No.61203309 No.51374107) 高校博士项目(No.20110161110035) 中国博士后基金(No.2013M54628)
关键词 精英策略 协同进化 粒子群 人工免疫系统 小波 elitist strategy coevolution particle swarm optimization (PSO) artificial immune system (AIS) wavelet
  • 相关文献

参考文献21

  • 1Eberhart R,Kennedy J A. A new optimizer using particle swarm theory[A].Nagoya,Japan:IEEE,1995.39-43.
  • 2Ho S Y,Lin H S,Liauh W H. OPSO:Orthogonal particle swarm optimization and its application to task assignment prob-lems[J].IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2008,(02):288-298.
  • 3Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J].IEEE Trans Syst Man Cyber B Cybern,2004,(02):997-1006.doi:10.1109/TSMCB.2003.818557.
  • 4Ahmed A A E,L T Germano,Z C Antonio. A hybrid particle swarm optimization applied to loss power minimization[J].IEEE Transactions on Power Systems,2005,(02):859-866.doi:10.1109/TPWRS.2005.846049.
  • 5Ling S H,HHC Iu,KY Chan. Hybrid particle swarm opti-mization with wavelet mutation and its industrial applications[J].IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2008,(03):743-763.
  • 6Liang J J,Qin A K,Suganthan P N. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,(03):281-295.doi:10.1109/TEVC.2005.857610.
  • 7Hao Wu,Geng J P,Rong H J. An improved comprehen-sive learning particle swarm optimization and its application to the semiautomatic design of antennas[J].IEEE Transactions on Antennas and Propagation,2009,(10):3018-3028.
  • 8Zhan Z H,Zhang J,Li Y. Adaptive particle swarm opti-mization[J].IEEE Transactions on Systems Man and Cyber-netics-Part B:Cybernetics,2009,(06):1362-1380.
  • 9Kennedy J,Mendes R. Neighborhood topologies in fully in-formed and best-of-neighborhood particle swarms[J].IEEE Trans Syst Man CybernC Appl Rev,2006,(04):515-519.
  • 10Bergha F Van den,Engelbrecht A P. A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,(03):225-239.

二级参考文献85

共引文献112

同被引文献141

引证文献16

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部