摘要
在实q-一致光滑Banach空间中,引入和研究了一类新的含P-η-增生算子的似变分包含组.利用P-η-增生算子的预解算子技巧,证明了此类新的似变分包含组解的存在性与唯一性,并构造了逼近此类似变分包含组解的Mann迭代算法.进一步讨论了由此迭代算法生成的迭代序列的收敛性.所得结果推广与改进了文献中的一些主要结果.
In this paper, we introduce and study a new system of variational-like inclusions involving P-η-accretive operators in real q-uniformly smooth Banach spaces. By using the resolvent operator technique associated with P-η-accretive operators, we prove the existence and uniqueness of solution for this new system of variational-like inclusions and suggest a Mann iterative algorithm for approximating the solution of this system of variational-like inclusions. Furthermore, we discuss the convergence of the sequence of iterates generated by the iterative algorithm. The results presented in this paper extend and improve some known results in the literature.
出处
《数学进展》
CSCD
北大核心
2013年第6期859-872,共14页
Advances in Mathematics(China)
关键词
似变分包含组
P-η-增生算子
预解算子
Mann迭代算法
收敛性
system of variational-like inclusions
P-η-accretive operator
resolvent oper-ator
Mann iterative algorithm
convergence