期刊文献+

斜广义幂级数环的幂零性质(英文)

Nilpotent Property of Skew Generalized Power Series Rings
原文传递
导出
摘要 设R是NI环且nil(R)为幂零理想,(S,≤)为严格全序幺半群且对任意8∈S,s≥0,ω:S→End(R)为compatible幺半群同态.本文证明了斜广义幂级数环[[R^(S,≤),ω]]是幂零p.p.环当且仅当环R是幂零P.P.环.同时还进一步证明了如果环R对弱零化子满足降链条件,则斜广义幂级数环[R^(S,≤),ω]]是弱APP环当且仅当环R是弱APP环.因此基环R的许多性质可以推广到斜广义幂级数环[[R^(S,≤),ω]上. Let R be an NI ring with nil(R) nilpotent, (S, ≤) a strictly totally ordered monoid satisfying the condition that 0≤s for all s G S, andω : S →End(R) be a compatible monoid homomorphism. Then the ring [[Rs,≤, ω]] of the skew generalized power series with coefficients in R and exponents in S is a nilpotent p.p.-ring if and only if R is a nilpotent p.p.-ring. Furthermore, if R satisfies the descending chain condition on weak annihilators, then [[RS'≤, ω]] is a weak APP-ring if and only if R is a weak APP-ring. Consequently, some properties of the base ring R can be profitably generalized to the skew generalized power series ring [[Rs'≤, ω]].
出处 《数学进展》 CSCD 北大核心 2013年第6期782-794,共13页 Advances in Mathematics(China)
基金 supported by NSFC(No.10771058,No.11071062) Natural Science Foundation of Hunan Province(No.10jj3065) Scientific Research Foundation of Hunan Provincial Education Department(No.10A033)
关键词 弱零化子 弱APP环 斜广义幂级数环 weak annihilator weak APP-ring skew generalized power series
  • 相关文献

参考文献1

二级参考文献23

  • 1Birkenmeier, G. F., Kim, J. Y., Park, J. K.: Principally quasi-Baer rings. Comm. Algebra, 29, 639-660(2000)
  • 2Birkenmeier, G. F., Kim, J. Y., Park, J. K.: Polynomial extensions of Baer and quasi-Baer rings. J. Pure Appl. Algebra, 159, 25 42 (2001)
  • 3Birkenmeier, G. F., Heatherly, H. E., Kim, J. Y., Park, J. K.: Triangular matrix representations. J. Algebra,230, 558-595 (2000)
  • 4Birkenmeier, G. F., Kim, J. Y., Park, J. K.: Semicentral reduced algebra, The International Symposium on Ring Theory (Birkenmeier G. F., Park J. K. and Park Y. S. (eds.)), Trends in Math., Birkhauser, Boston,67-84, 2001
  • 5Birkenmeier, G. F., Park, J. K.: Triangular matrix representations of ring extensions. J. Algebra, 265,457-477 (2003)
  • 6Gordon, R., Small, L. W.: Piecewise domains. J. Algebra, 23, 553-564 (1972)
  • 7Brookfield, G.: Noetherian generalized power series rings. Comm. Algebra, to appear
  • 8Varadarajan, K.: Noetherian generalized power series rings and modules. Comm. Algebra, 29, 245-251(2001)
  • 9Varadarajan, K.: Generalized power series modules. Comm. Algebra, 29, 1281-1294 (2001)
  • 10Kassel, C.: Quantum groups, Springer, Berlin, 1995

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部