期刊文献+

利用Brushlet变换进行SAR图像变化检测 被引量:2

SAR image change detection based on Brushlet transform
在线阅读 下载PDF
导出
摘要 针对传统空域和小波域检测算法的相邻像素间相似特征捕捉性能差、方向分辨率低的问题,提出了一种基于非下采样Brushlet变换和各向异性Gabor窗的二维最大类间方差变化检测方法.将非下采样Brushlet域的各向异性Gabor非线性加权均值计算和空域最小化均方误差的线性组合相结合,来获取相干斑噪声抑制后的均值特征,解决了角分辨率低的问题,获得了各个方向、频率和位置的精确定位;利用二维最大类间方差阈值分割来得到最终的变化检测结果.对真实的SAR图像进行了实验,证明了新方法有着较好的检测结果,并能够很好地保留边缘等细节信息. The traditional change detection method has a poor accuracy for similarity character capture and low direction-resolution. In this paper, a new 2D-Otsu SAR image change detection method is proposed based on the overcomplete Brushlet transform and Gabor window. This method combines the local anisotropic Gabor weighted nonlinear mean procedure in the overcomplete Brush[et domain and linear combination with the minimum mean squared error in the original domain to obtain mean character after the speckle noise is removed, which resolves the problem of low direction-resolution, and can accurately position the texture of each direction, frequency and position. Finally, change detection is processed by the 2D-Otsu method which combines the mean character and gray-level character. Experiment results show that the new method has a better performance, and can well preserve the detailed information such as the texture and edge.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第6期67-73,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61173092 61072106 60971128 61077009 60972148 60970066 61003198 61001206 61050110144) 高等学校学科创新引智计划(111计划)资助项目(B07048) 教育部"长江学者和创新团队发展计划"资助项目(IRT1170)
关键词 图像变化检测 BRUSHLET变换 各向异性 阈值分割 image change detection Brushlet transform anisotropic threshold segmentation
  • 相关文献

参考文献12

  • 1Wan H L, Iung C, Hou B, et al. Novel Change Detection in SAR Imagery Using Local Connectivity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 174-178.
  • 2辛芳芳,焦李成,王桂婷,万红林.利用小波域HMC模型进行遥感图像变化检测[J].西安电子科技大学学报,2012,39(3):43-49. 被引量:10
  • 3Chen K M, Zhou Z X, Huo C L, et al. A Semisupervised Context-Sensitive Change Detection Technique Via Gaussian Process OJ. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 236-240.
  • 4Wang F, Wu Y, Zhang Q, et al. Unsupervised Change Detection on SAR Images Using Triplet Markov Field Model OJ. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 697-70l.
  • 5辛芳芳,焦李成,王凌霞,王桂婷.利用改进Fisher分类器进行遥感图像变化检测[J].西安电子科技大学学报,2012,39(5):12-17. 被引量:3
  • 6Meyer F G, Coifman R. Brushlet: a Tool for Directional Image Analysis and Image Compression[J]. Applied and Computional Harmonic Analysis, 1997, 4(2): 147-187.
  • 7LiJ M, Zhong H,Jiao L C. SAR Image Segmentation Based on Multiresolution GLCP in Overcomplete Brushlet Domain[CJ IIProceedings of IEEE International Conference on Radar. Piscataway: IEEE, 2006: 1-4.
  • 8Blu T, Luisier F. The SURE-LET Approach to Image Denoising OJ. IEEE Transcations on Image Processing, 2007, 16 (11): 2778-2786.
  • 9Zeng W, Zhou L,Jiang X B, et al. Clustering Based Image Denoising Using SURE-LET[CJI12011 Seventh International Conference on Computational Intelligence and Security. Piscataway: IEEE, 2011: 1303-1307.
  • 10Luisier F, Blu T, Unser M. SURE-LET for Orthonormal Wavelet-Domain Video Denoising OJ. IEEE Transcations on Circuits and Systems for Video Technology, 2010, 20(6): 913-919.

二级参考文献10

  • 1SBovolo F, Camps-Vails G, Bruzzone L. A Support Vector Domain Method for Change Detection in Multitemporal Images[J]. Pattern Recognition Letters, 2010, 31(10): 1148-1154.
  • 2Bazi Y, Bruzzone L," Melgani F. An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images[J].IEEE Trans on Geosci Remote Sens, 2005, 43(4) : 874-887.
  • 3Bovolo F, Bruzzone L. A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in Polar Domain[J]. IEEE Trans on Geosci Remote Sens, 2007, 45(3) : 778-789.
  • 4Kita Y. A Study of Change Detection from Satellite Images Using Joint Intensity Histogram[C]//19th International Conference on Digital Object Identifier. Tampa: Pattem Recodnition, 2008: 1-4.
  • 5Sugiyama M. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis[J]. Machine Learning Research, 2007(8): 1027-1061.
  • 6Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis[J]. IEEE Trans on Pattern Anal Mach Intell, 2002, 24(5): 603-619.
  • 7Francesca B, Lorenzo B. A Detail-Preserving Scalse-Driven Approach to Change Detection in Multitemporal SAR Images [J].IEEE Trans on Geosci Remote Sens, 2005, 43(12) : 2963-2972.
  • 8魏莱,王守觉,徐菲菲,王睿智.近邻边界Fisher判别分析[J].电子与信息学报,2009,31(3):509-513. 被引量:6
  • 9王桂婷,王幼亮,焦李成.自适应空间邻域分析和瑞利-高斯分布的多时相遥感影像变化检测[J].遥感学报,2009,13(4):631-646. 被引量:18
  • 10辛芳芳,焦李成,王桂婷,万红林.基于小波域Fisher分类器的SAR图像变化检测[J].红外与毫米波学报,2011,30(2):173-178. 被引量:9

共引文献11

同被引文献37

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部