期刊文献+

基于耦合隐马尔可夫模型的异常交互行为识别 被引量:7

Recognition of abnormal interactions based on coupled hidden Markov models
在线阅读 下载PDF
导出
摘要 为了有效识别视频监控领域中的打斗和抢劫等异常交互行为,提出一种基于耦合隐马尔可夫模型(CHMM)的异常交互行为识别方法.首先对人与人之间异常交互行为与正常交互行为的特征差别进行分析,然后提取了包括速度、面积变化率、目标外接矩形长宽比变化率、目标间距、目标运动方向角度差以及方向梯度直方图6类人体目标的运动特征和形态特征,并组成训练数据集,在此基础上使用耦合隐马尔可夫方法构建异常交互行为模型.实验中引入一些典型的行为数据库,如CASIA和CAVIAR数据集,通过和传统的基于隐马尔可夫模型(HMM)的识别方法进行对比,表明CHMM方法更适合于识别少数人的异常交互行为,且识别率更高. To effectively recognize the abnormal interactions such as fighting and robbing in an intel-ligent video surveillance area,a recognition method for abnormal interactions based on coupled hid-den Markov models (CHMM)is presented.First,the difference between the features of abnormal interactions and that of normal interactions is analyzed.Then the motion features and shape features of the object are extracted to construct the training data set,which are the speed,area change rate, change rate of the bounding rectangle aspect ratio,distance,angle difference of motion direction and the histogram of oriented gradients.Based on them,the CHMM is exploited to construct the abnor-mal interactions model.In the experiments,some classical test cases such as CASIA and CAVIAR are used,and the traditional recognition based on hidden Markov models (HMM)is adopted for comparison.By these experiments,it is proved that the CHMM is more suitable for recognizing the abnormal interactions between fewer people than the HMM,and the recognition rate of the CHMM is higher than that of the HMM.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期1217-1221,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60972001) 苏州市科技计划资助项目(SG201076)
关键词 异常交互行为 耦合隐马尔可夫模型 运动特征 形态特征 abnormal interactions coupled hidden Markov models motion feature shape feature
  • 相关文献

参考文献12

  • 1Oliver N M, Rosario B, Pentland A P. A Bayesian com- puter vision system for modeling human interactions [ J ]. IEEE Transactions on Pattern Analysis atut Machine In- telligence, 2000, 22 ( 8 ) : 831 - 843.
  • 2杜友田,陈峰,徐文立.基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法[J].自动化学报,2009,35(3):225-232. 被引量:23
  • 3Xiang Tao, Gong Shaogang. Beyond tracking: modeling activity and understanding behavior [ J ]. Computer Vi- sion, 2006, 67 ( 1 ) : 21 - 51.
  • 4朱旭东,刘志镜.基于主题隐马尔科夫模型的人体异常行为识别[J].计算机科学,2012,39(3):251-255. 被引量:38
  • 5Brand M, Oliver N, Pentland A. Coupled hidden Mark- ov models for complex action recognition E CJ//Proceed- ings of the IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. San Juan, PR, USA, 1997: 994-999.
  • 6Che Hao, Tao Jianhua, Pan Shifeng. Letter-to-sound conversion using coupled hidden Markov models for lexi-con compression[C ]//Proceedings of the 2012 Interna- tional Conference on Speech Database and Assessments. Macao, China, 2012:141 -144.
  • 7Luo Ronghua, Min Huaqing, Xu Yonghui, et al. Cou- pled hidden semi-Markov conditional random fields based context model for semantic map building [ C ]//Proceed- ings of International Conference on Machine Learning and Cybernetics. Yd'an, China, 2012: 785- 791.
  • 8Alippi C, Ntalampiras S, Roveri M. A cognitive fault diagnosis system for distributed sensor networks [ J ]. IEEE Transactions on Neural Networks and Learning Systen:', 2013, 24(8) : 1213 - 1226.
  • 9Cao Longbing, Ou Yuming, Yu P S. Coupled behavior analysis with applications [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(8): 1378- 1392.
  • 10土建东.基于视频图像的人体异常行为识别技术研究[D].重庆:重庆大学通信工程学院,2009.

二级参考文献62

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:80
  • 2Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162.
  • 3Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752.
  • 4Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45.
  • 5Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8.
  • 6Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845.
  • 7Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5000): 2323-2326.
  • 9Aggarwal J K, Park S. Human motion: modeling and recognition of actions and interactions. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visulization, and Transmission. Thessaloniki, Greece: IEEE, 2004. 640-647.
  • 10Pers J, Vuckovic G, Dezman B, Kovacic S. Scale-based human motion representation for action recognition. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis. Rome, Italy: IEEE, 2003. 668-673.

共引文献77

同被引文献73

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部