期刊文献+

基于信息素的改进蚁群算法及其在TSP中的应用 被引量:7

Improved Ant Colony Algorithm Based on Pheromone and Application in the TSP
原文传递
导出
摘要 针对基本蚁群算法收敛速度慢、易陷于局部最优从而导致搜索停滞的缺陷,提出了一种改进蚁群算法模型.改进算法引入信息素调节系数,避免算法初期各路径上信息素出现过大差异,导致算法"早熟".通过动态调整信息素挥发,在求解速度和寻找全局最优之间寻找平衡.对旅行商问题的仿真结果表明:改进算法的求解结果和求解效率都明显优于基本蚁群算法. The basic ant colony algorithm converges slowly, is prone to plunge into partial optimum and results in search stagnation. In this paper, an improved ant colony algorithm is proposed. New algorithm introduces pheromone adjustment coefficient, and avoids appearing great differences in the paths early. By adjusting pheromone evaporation dynamically, balance is kept between solution speed and global optimum. The simulation results of traveling salesman problem show that improved algorithm is much more efficient than the basic ant colony algorithm.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第22期157-161,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(50904032) 辽宁省教育厅科学技术研究项目(L2010177)
关键词 蚁群算法 局部最优 信息素 旅行商问题 ant colony algorithm(ACA) partial optimum pheromone traveling salesman problem(TSP)
  • 相关文献

参考文献6

二级参考文献34

  • 1杨洁,杨胜,曾庆光,李仁发.基于信息素强度的蚁群算法[J].计算机应用,2009,29(3):865-867. 被引量:7
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:217
  • 3张军英,敖磊,贾江涛,高琳.求解TSP问题的改进蚁群算法[J].西安电子科技大学学报,2005,32(5):681-685. 被引量:25
  • 4陈昊.蚁群优化算法的原理及其应用[J].湖北大学学报(自然科学版),2006,28(4):350-352. 被引量:7
  • 5杨剑锋.蚁群算法及其应用研究[D].杭州:浙江大学,2007.
  • 6DORIGO M,MANIEZZO V,COLORNI A.The ant system:optimization by a colony of cooperating agent[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.
  • 7DORIGO M,GAMBARDELLA L M,MIDDENDORF M.vip editorial:special section on ant colonyoptimization[J].IEEE Transactions on Evolutionary Computation,2002,6(4):317-319.
  • 8BLUM C.Ant colony optimization:introduction and recent trends[J].Physics of Life Reviews,2005,2(4):353-373.
  • 9COLORM A,DORIGOM,MINIEZZO V.Distributed optimization by ant colonies[C].Proceeding of the First European Conference on Artificial Life.Paris France:Elsevier Publishing,191:134-142.
  • 10Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans Evolutionary Computation, 1997, 1(1):53-66.

共引文献28

同被引文献64

  • 1田贵超,黎明,韦雪洁.旅行商问题(TSP)的几种求解方法[J].计算机仿真,2006,23(8):153-157. 被引量:32
  • 2THOMAS Stutzle,JOLGER Hoos. MAX-MIN ant system and local search for the traveling salesman problem[C]// Evolutionary Computation, IEEE International Conference, Indianapolis : IEEE Press, 1997 : 309-314.
  • 3AKIHIRO Uchida,YASUAKI Ito,KOJI Nakano. Accelerating ant colony optimization for the travelling salesman problem on the GPU[J]. International Journal of Parallel, Emergent and Distributed Systems, 2 014,2 9 (4) .. 4 01-4 2 0.
  • 4DONG Gaifang,GUO William,TICKLE Kevin. Solving the traveling salesman problem using cooperative genetic ant systems[J]. Expert Systems with Applications,2011,39 (5) :5006-5011.
  • 5LeticiaCecilia Cagnina,SusanaCecilia Esquivel,CarlosA.Coello Coello.Solving constrained optimization problems with a hybrid particle swarm optimization algorithm[J].Engineering Optimization,2011(8).
  • 6Walter J Gutjahr.A Graph-based Ant System and its convergence[J].Future Generation Computer Systems.2000(8).
  • 7郑松,侯迪波,周泽魁.动态调整选择策略的改进蚁群算法[J].控制与决策,2008,23(2):225-228. 被引量:40
  • 8刘锁兰,王江涛,王建国,杨静宇.一种新的基于图论聚类的分割算法[J].计算机科学,2008,35(9):245-247. 被引量:13
  • 9王娟,王建.一种求解TSP问题的改进蚁群算法[J].计算机技术与发展,2008,18(12):50-52. 被引量:5
  • 10乔彦平,张骏.基于一种改进遗传模拟退火算法的TSP求解[J].计算机仿真,2009,26(5):205-208. 被引量:26

引证文献7

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部