期刊文献+

基于最优重构的病理嗓音基频检测算法研究

Pitch Frequency Detection of Pathological Voice based on Optimal Reconstructed Signal
原文传递
导出
摘要 提出了一种基于多级小波分解重构和非线性动力学参数的病理嗓音基音频率检测算法。首先对病理嗓音进行多级小波分解及重构,然后采用最大李雅普诺夫指数和近似熵表征不同重构嗓音的规则度从而自适应地选择周期性最优的小波重构嗓音信号,以直接提取基音频率。实验结果表明,与传统的基音检测算法相比,该方法有效地避免了检测中所存在的倍频及分频误差,提高了病理嗓音检测的鲁棒性及准确度。 This paper proposes a new pitch detection algorithm of pathological vome based on alscrete wave- let, largest lyapunov exponent and approximate entropy. Firstly, Daubechies' discrete wavelet transform is used to process the pathological voice, and then the most regular reconstructed signal is adaptively selected to detect period based on tile two nonlinear dynamic parameters. Results show that this method could effec- tively avoid the detection of frequency doubling and frequency division error, and improve the robustness and accuracy of the pathologic voice detection.
出处 《通信技术》 2013年第11期42-46,共5页 Communications Technology
基金 国家自然科学基金(No.61271359)病理嗓音识别与修复~~
关键词 病理嗓音基频 离散小波变换 最大李亚普诺夫指数 近似熵 pathological voice pitch frequency discrete wavelet transform LLE (Largest Lyapunov Expo-nent) ApEn ( Approximate Entropy)
  • 相关文献

参考文献10

  • 1莫丽花,周孝进,张晓俊,陶智,赵鹤鸣,顾济华.基于LPCC和MFCC参数的病理嗓音识别研究[J].通信技术,2012,45(1):87-89. 被引量:3
  • 2LI H, DAI B Q, LU W. A Pitch Detection Algorithm based on AMDF and ACF[ C ]//IEEE International Con- ference on Acoustics Speech and Signal Processing. [ s. 1. ] : IEEE, 2006 : 377-400.
  • 3JAMES C. Classifying Voice Quality via Pitch and Spec- tral Analysis[ C]//Proceedings of the CUBE International Information Technology Conference. New York : [ s. n. ] , 2012:429-434.
  • 4KADAMBE S, BOUDREAUX-BARTELS G F. Applica- tion of the Wavelet Transform for Pitch Detection of Speech Signal [ J ]. IEEE Trans. on Information Theory, 1992, 38(02): 917-924.
  • 5EVERTHON S F, RODRIGO C G, PAULO R S, et al. Wavelet Time-frequency Analysis and Least Squares Sup- port Vector Machines for the Identification of Voice Disor- ders[ J ]. Computers in Biology and Medicine, 2007, 37 (4) :571-578.
  • 6李冠,吴尽昭,范明钰.基于小波的信号去噪分析[J].通信技术,2010,43(9):79-81. 被引量:18
  • 7WADI S A1, ISMAIL M T,KARIM S A A, et al. A Com- parison between the Daubechies Wavelet Transformation and the Fast Fourier Transform in Analyzing Insurance Time Series Data[J]. Far East Journal of Applied Mathe- matics, 2013,45(01 ) :53-63.
  • 8JULIA KM, LI C, ZHANG Y,et al. Acoustic Analysis of Aperiodic Voice: Perturbation and Nonlinear Dynamic Properties in Esophageal Phonation [ J ]. Journal of Voice, 2009, 23 (03) :283-290.
  • 9CHON K H, SCULLY C, SHENG L, et al. Approximate Etropy for all Signals [ J ]. IEEE Engineering in Medicine and Biology Magazine, 2009, 28(06) :18-23.
  • 10PATRICIA H, JESUS B A, MIGUEL A F, et al. Char- acterization of Healthy and Pathological Voice Through Measures Based on NonlinearDynamics [ J ]IEEE Trans- actions on Audio Speech and Language Processing, 2009, 17(06) :1186-1195.

二级参考文献21

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部