期刊文献+

基于SVM的WSN运动目标位置跟踪预测方法研究 被引量:1

Moving target localization track method for wirless sensor networks based on SVM
在线阅读 下载PDF
导出
摘要 针对无线传感器网络中运动目标位置跟踪预测方法的研究,提出了一种基于支持向量回归机(SVM)的目标位置预测方法。利用节点位置信息和网络连通信息作为训练样本,建立支持向量回归技术到节点位置的映射函数,从而完成运动目标已知时刻位置估计。最后,利用支持向量回归预测模型对运动目标节点进行位置预测。仿真结果表明,该方法有效地提高了目标节点位置预测准确率。 To research the location track prediction method for moving target in wireless sensor network, a target location prediction method based on support vector regression machine is proposed in the paper. Using node location information and network connectivity information as training samples, it establishes a support vector regression techniques to the mapping function of the location of the node, thus completing the moving target known time location estimation. Finally, it predicts the location of moving target node by using support vector regression prediction model. Simulation results show that this method effectively improves the target node position estimation accuracy.
作者 谌友仁 廖兵
出处 《微型机与应用》 2013年第19期58-60,65,共4页 Microcomputer & Its Applications
关键词 无线传感器网络 位置估计 支持向量机 跟踪预测 wireless sensor network location estimation support vector regression track prediction
  • 相关文献

参考文献8

  • 1ARORA A, DUTFA P, BAPAT S, et al. A line in the sand: a wireless sensor network for target deteetion, classification, and tracking [q Computer Telecommunications Computer Networks the Int J Networking, 2004 : 605-634.
  • 2Zhu Anfu, Jing Zhanrong, Yang Yan. Maneuvering target tracking based on ANFUS and UKF [C]. 2008 Intemational Conference on Intelligent Computation Technology and Automation, 2008:904908.
  • 3VAPNIK V. The nature of statistical learning theory [M]. NewYork : Springer-Verlag, 1995.
  • 4CORTES C, VAPNIK V. Support-vector networks [J]. Machine Learning, 1995,20(3): 273-297.
  • 5WU Z L, LI C H, JOSEPH K Y N, et al. Location estimation via support vector regression[J]. IEEE Transactions on Mobile Computing, 2007,6 (3) : 3 ! 1-321.
  • 6NGUYEN X, JORDAN M, SINOPOLI B. A kernel-based learning approach to ad hoc sensor network localization[J].ACM Transactions on Sensor Networks,2005,1 (1) : 134-152.
  • 7魏叶华,李仁发,罗娟,付彬.基于支持向量回归的无线传感器网络定位算法[J].通信学报,2009,30(10):44-50. 被引量:12
  • 8HEISELE B, PURDY HO, POGGIO T. Face recognition with support vector machines global versus component- based approach [C]. Proceedings of International Conference on Computer Vision, Vancouver, Canada,2001:688-694.

二级参考文献16

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:675
  • 2SAVVIDES A, PARK H, SRIVASTAVA M. The bits and flops of the n-hop multilateration primitive for node localization problems[A]. Proceedings of ACM WSNA '02[C]. Atlanta, Georgia, USA, 2002.
  • 3SHANG Y, RUML W, ZHANG Y, et al. Localization from mere connectivity[A]. Proc of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing[C]. Annapolis, USA, 2003.
  • 4BISWAS P, LIANG T C, TOH K C, et al. Semidefinite programming approaches for sensor network localization with noisy distance measurements[J]. IEEE Trans Autom Sci Eng, 2006, 3(4):360-370.
  • 5WU Z L, LI C H, JOSEPH K Y N, et al. Location Estimation via Support Vector Regression[J]. IEEE Transactions on Mobile Computing, 2007, 6(3):311-321.
  • 6NGUYEN X, JORDAN M, SINOPOLI B. A kernel-based learning approach to ad hoc sensor network localization[J]. ACM Transactions on Sensor Networks, 2005, 1(1):134-152.
  • 7ZHU C E KUH A. Dynamic ad hoc network localization using online least squares kernel subspace methods[A]. IEEE International Symposium on Information Theory[C]. Washington, USA, 2006.
  • 8LINI H, HOU J C. Localization for anisotropic sensor networks[A] Proceedings IEEE INFOCOM 2005.24th Annual Joint Conference of the IEEE Computer and Communications Societies[C]. Florida, USA, 2005.
  • 9TANG L, CROVELLA M. Virtual landmarks for the Internet[A]. Proceedings of the ACM/SIGCOMM Intemet Measurement Conference[C]. FL, USA, 2003.
  • 10RAPPAPORT T S. Wireless Communications: Principles and Practice[M]. Upper Saddle River, NJ: Prentice Hall PTR, 2002.

共引文献11

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部