期刊文献+

Hilbert空间中的广义正交基 被引量:3

g-Orthonormal bases in Hilbert spaces
原文传递
导出
摘要 广义正交基是Hilbert空间中正交基的一个自然推广.本文首先给出一个广义正交基存在的较弱的充要条件;然后研究广义正交基的性质,特别地,得到广义正交基版本的一些有关正交基的经典性质,如广义正交基的Bessel等式和不等式等.作为广义正交基的一个应用,本文给出广义Riesz基的一些新刻画.最后本文讨论广义框架的冗余问题. g-Orthonormal basis is a natural generalization of orthonormal basis in Hilbert spaces. In this paper, firstly, we give a general condition such that the g-orthonormal bases exist. Then we consider the properties of g-orthonormal basis. In particular, we establish the g-orthonormal basis versions of some classical properties of orthonormal basis, such as Bessel inequality and Bessel equality etc. We also give some new characterizations of g-Riesz bases. Finally, we discuss the redundancy problem of g-frames.
作者 郭训香
出处 《中国科学:数学》 CSCD 北大核心 2013年第10期1047-1058,共12页 Scientia Sinica:Mathematica
关键词 广义正交基 广义框架 广义Riesz基 广义完备 广义线性无关 g-orthonormal basis, g-frame, g-Riesz basis, g-complete, g-linearly independent
  • 相关文献

参考文献2

二级参考文献42

  • 1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 2Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 3Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 4Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 5Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 6Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 7Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 8Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)
  • 9Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1), 437-452 (2006)
  • 10Sun, W.: Stability of g-frames. J. Math. Anal. Appl., 326(2), 858-868 (2007)

共引文献40

同被引文献21

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部