期刊文献+

加权光滑CHKS孪生支持向量机 被引量:14

Weighted Smooth CHKS Twin Support Vector Machines
在线阅读 下载PDF
导出
摘要 针对光滑孪生支持向量机(smooth twin support vector machines,简称STWSVM)采用的Sigmoid光滑函数逼近精度低和STWSVM对异常点敏感的问题,引入一种性能更好的光滑函数——CHKS函数,提出了光滑CHKS孪生支持向量机模型(smooth CHKS twin support vector machines,简称SCTWSVM).在此基础上,根据样本点的位置为每个训练样本赋予不同的重要性,以降低异常点对非平行超平面的影响,提出了加权光滑CHKS孪生支持向量机(weighted smooth CHKS twin support vector machines,简称WSCTWSVM).不仅从理论上证明了SCTWSVM具有严凸性和任意阶光滑的性能,而且在数据集上的实验结果表明,相对于STWSVM,SCTWSVM可以在更短的时间内获得更高的分类精度,同时验证了WSCTWSVM的有效性和可行性. Smooth twin support vector machines (STWSVM) uses Sigmoid function to transform the unsmooth twin support vector machines (TWSVM) into smooth ones. However, because of the low approximation ability of Sigmoid function, the classification accuracy of STWSVM is unsatisfactory. Furthermore, similar to TWSVM, STWSVM is sensitive to the abnormal samples. In order to address the above problems, this paper introduces CHKS function, and proposes a smooth twin support vector machines, smooth CHKS twin support vector machines (SCTWSVM). In order to reduce the influence of abnormal samples on SCTWSVM, different importance are given for each training sample according to the sample point positions for SCTWSVM, resulting in weighted smooth CHKS twin support vector machines (WSCTWSVM). The study proves that SCTWSVM is not only strictly convex, but also can meet the arbitrary order smooth performance. Meanwhile, the experimental results show that SCTWSVM has better performance than STWSVM. Furthermore, the experimental results also show that WSCTWSVM is effective and feasible relative to SCTWSVM.
出处 《软件学报》 EI CSCD 北大核心 2013年第11期2548-2557,共10页 Journal of Software
基金 国家自然科学基金(61379101) 国家重点基础研究发展计划(973)(2013CB329502)
关键词 孪生支持向量机 光滑孪生支持向量机 CHKS函数 光滑 加权 twin support vector machines smooth twin support vector machines CHKS function smooth weight
  • 相关文献

参考文献2

二级参考文献12

  • 1Dacheng Tao,Xuelong Li,Xindong Wu,Weiming Hu,Stephen J. Maybank.Supervised tensor learning[J].Knowledge and Information Systems.2007(1)
  • 2X. He,,D. Cai,,P. Niyogi.Tensor subspace analysis[].Nineteenth Annual Conference on Neural Information Processing Systems.2005
  • 3H. Lu,,K. N. Plataniotis,,A. N. Venetsanopoulos.MPCA: Multilinear principal component analysis of tensor objects[].IEEE Transactions on Neural Net- works.2008
  • 4Y. Fu,T. S. Huang.Image classification using correlation tensor analysis[].IEEE Transactions on Image Processing.2008
  • 5M. Heath,,K. Bowyer,,D. Kopans, et al.The digital database for screening mammography[].IWDM’ (th International Workshop on Digital Mammogra- phy).2000
  • 6EI-Naqa I,Yang Yongyi,Wernick M N,et al.A support vector machine approach for detection of microcalcifications[].IEEE Transactions on Medical Imaging.2002
  • 7Liyang Wei,,Yongyi Yang,Robert M.Nishikawa,and Yulei Jiang.A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications[].IEEE Transactions on Medical Imaging.2005
  • 8Tao DC,Li XL,Wu XD,Hu WM,Maybank SJ.Supervised tensor learning[].Knowledge and Information Systems.2007
  • 9Wei Liyang,Yang Yongyi,Nishikawa R M,et al.Relevance vector machine for automatic detection of clustered microcalcifications[].IEEE Transactions on Medical Imaging.2005
  • 10YANS,XUD,YANG Q.Multilinear discriminant analysis for face recognition[].IEEE Transactions on Image Processing.2007

共引文献22

同被引文献106

  • 1张新征,李海鹰.“大数据”对美陆军信息系统建设的影响[J].轻兵器,2012(19):10-12. 被引量:8
  • 2袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 3周水生,詹海生,周利华.训练支持向量机的Huber近似算法[J].计算机学报,2005,28(10):1664-1670. 被引量:2
  • 4王宪保,周德龙,王守觉.基于仿生模式识别的构造型神经网络分类方法[J].计算机学报,2007,30(12):2109-2114. 被引量:11
  • 5Ding Shifei, Hua Xiaopeng. Recursive least squares projection twin support vector machines [J]. Neurocomputing, 2014, 130.. 3-9.
  • 6Ding Shifei, Jia Hongjie, Chen Jinrong, et aL Granular neural networks [J]. Artificial Intelligence Review, 2014, 41 (3): 373-384.
  • 7Cortes C, Vapnik V N. Support vector networks [J]. Machine Learning, 1995, 20:273-297.
  • 8Platt J C. Using analytic QP and sparseness to speed training of support vector machines [C] //Advances in Neural Information Processing Systems 11. Cambridge, MA: MIT Press, 19991 557-563.
  • 9Fung G, Mangasarian O L. Proximal support vector machine classifiers [C] //Proe of 2001 ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York ACM, 2001 : 77-86.
  • 10Mangasarian O L, Wild W. Multi-surface proximal support vector machine classification via generalized eigenvalues [J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.

引证文献14

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部