期刊文献+

格基归约在密码上的应用 被引量:2

Cryptographic application of lattice reduction
在线阅读 下载PDF
导出
摘要 文中详细综述了格基归约在密码学中的应用 ,并从分析与设计两方面进行了论述 .在密码分析方面的应用主要对线性同余截尾序列进行了分析和论述 ,在密码体制设计上主要介绍了NTRU公钥密码体制 ,对其安全性进行了分析 ,并与其他体制进行了比较 . The application of lattice reduction in cryptography is demonstrated. For cryptoanalysis, we mainly give an application to the truncated linear congruent sequence. And for cryptosystem design, we breefly introduce the NTRU cryptosystem, with the analysis of its security also presented.
作者 肖鸿 赵惠文
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2000年第6期736-739,767,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目!(6 96 730 2 5 ) 国家密码发展基金资助项目
关键词 格基归约 线性同余截尾序列 密码学 lattice reduction LLL algorithm truncated linear congruent sequence NTRU public cryptosysL
  • 相关文献

参考文献3

  • 1C. P. Schnorr,M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems[J] 1994,Mathematical Programming(1-3):181~199
  • 2Matthijs J. Coster,Antoine Joux,Brian A. LaMacchia,Andrew M. Odlyzko,Claus-Peter Schnorr,Jacques Stern. Improved low-density subset sum algorithms[J] 1992,Computational Complexity(2):111~128
  • 3A. K. Lenstra,H. W. Lenstra,L. Lovász. Factoring polynomials with rational coefficients[J] 1982,Mathematische Annalen(4):515~534

同被引文献15

  • 1[1]Hoffstein J, Pipher J, Silverman J H. NTRU: A new high speed public key cryptosystem. Crypto'96, 1996:471
  • 2[2]Lenstr A K. Factoring Polynonials with Interger Coefficients. Math Ann, 1982;261:513
  • 3Jr H W. Lenstra. Integer programming with a fixed number of variables[J]. Math Oper Res, 1983 8: 538-548.
  • 4Lenstra A K, Jr H W Lenstra and Lovasz L. Factoring polynomials with rational coefficients[J] Math Ann, 1982, 261: 515-534.
  • 5Lovasz L. An algorithmic theory of numbers, graphs and convexity[C]//CBMS-NSF Regional Con- ference Series in Applied Mathematics 50, SIAM, Philadelphia, Pennsylvania, 1986.
  • 6Lovasz L. Geometry of numbers and integer programming[C]//Proceedings 13th Annual Syrup. on Mathematical Programming, 1988: 177-201.
  • 7Grotschel M, Lovasz L, and Schrijver A. Geometric Algorithms and Combinatorial Optimization[M]. Springer-Verlag, 1988.
  • 8Hoffstein J, Pipher J, and Silverman J H. NTRU, a new high speed public key cryptosystem[C]// Algorithm Number Theory-ANTS III. Berlin, Springer-Verlag, 1998: 267-288.
  • 9Coster M J, Lamacchia B A, Odlyzko A M. et al. An improved low-density subset sum algo- rithmiC]// Advances in Cryptology-Eurocrypt'91. Berlin: Springer-Verlag, 1991: 54-67.
  • 10Nguyen P Q, and Stem J. The two faces of lattices in cryptology[C]//CaLC2001, Berlin, Springer- Verlag~ 2001: 146-180.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部