期刊文献+

基于常量Q变换的音符起始点检测 被引量:2

Note Onset Detection Based on Constant Q Transform
在线阅读 下载PDF
导出
摘要 针对音乐的音阶频率按指数规律分布的特点,提出基于常量Q变换(CQT)的音符起始点检测算法。该算法根据十二平均律的音阶频率分布规律,对音乐信号进行分解,得到一个分音矩阵,利用该分音矩阵生成检测函数,并提取峰值,得到音符起始点向量。实验结果显示,该算法的检测结果要优于2011年MIREX的结果。 The frequencies of music scales are exponentially distributed. This paper proposes an algorithm for note onset detection, which is based on Constant Q Transform(CQT) and adapts to the characteristics of music scales. The music signals are decomposed to a partial, matrix through CQT, according to the frequencies distribution of twelve-tone equal temperament. Detection function is generated using the partial matrix. Peaks are picked, and note onset vector is obtained. Experimental results show that the results are superior to those of 2011 MIREX.
出处 《计算机工程》 CAS CSCD 2013年第10期283-286,共4页 Computer Engineering
基金 国家自然科学基金资助项目"基于内容的流行音乐结构分析的研究"(60902065)
关键词 音符起始点检测 十二平均律 常量Q变换 短时傅里叶变换 分音矩阵 峰值提取 note onset detection twelve-tone equal temperament Constant Q Transform(CQT) Short Time Fourier Transform(STFT) partial matrix peak picking
  • 相关文献

参考文献12

  • 1Casey M A, Veltkamp R, Goto M, et al. Content-based Music Information Retrieval: Current Directions and Future Challenges[J]. Proceedings of the IEEE, 2008, 96(4): 668-696.
  • 2Shao Xi. Contend-based Music Classification Summarization and Retrieval[D]. Singapore: National University of Singapore, 2006.
  • 3Goto M. An Audio-based Real-time Beat Tracking System for Music with or Without Drum-sounds[J]. Journal of New Music Research, 2001, 30(2): 159-171.
  • 4陈哲,许洁萍.基于内容的音乐节拍跟踪[J].电子学报,2009,37(B04):156-160. 被引量:5
  • 5Bello J P, Daudet L, Abdallah S, et al. A Tutorial on Onset Detection in Music Signals[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 1035-1047.
  • 6Duxbury C M S, Davies M. A Hybrid Approach to Musical Note Onset Detection[C]//Proc. of Digital Audio Effects Conference. Hamburg, Germany: Is. n.], 2002.
  • 7Holzapfel A, Stylianou Y, Gedik A C, et al. Three Dimensions of Pitched Instrument Onset Detection[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6): 1517-1527.
  • 8Tan Huili, Zhu Yongwei, Chaisorn L, et al. Audio Onset Detection Using Energy-based and Pitch-based Processing[C]// Procl of International Symposium on Circuits and Systems. [S. 1.]: IEEE Press, 2010: 3689-3692.
  • 9桂文明,邵曦,刘睿凡.一种新型音符起始点检测算法[J].计算机工程与应用,2011,47(24):9-11. 被引量:3
  • 10Daudet L. Transients Modeling by Pruned Wavelet Trees[C]// Proc, of International Computer Music Conference. Havana, Cuba: Is. n.J. 2001: 18-21.

二级参考文献14

  • 1Masataka Goto, Yoichi Muraoka. A real-time beat tracking system for audio signals[A]. In Proceedings of the International Computer Music Conference [ C ]. San Francisco: International Computer Music Association, 1995. 171 - 174.
  • 2Masataka Goto, Yoichi Muraoka. A real-time beat tracking for drumless audio signals: chord change detection for musical decisions[ J ]. Speech Communication, 1999,27: 311 - 335.
  • 3Eric D Scheirer. Tempo and beat analysis of acoustic musical signals[J]. The Journal of The Acoustical Society America, 1998,103(1) :588 - 601.
  • 4Daniel Ellis. Beat tracking by dynamic programming[J].New Music Research, Special Issue on Beat and Tempo Extraction,2007,36(1):51 -60.
  • 5Douglas Eck. Finding meter in music using an autocorrelation phase matrix and shannon entropy[A]. ISMIR[C]. London: University of London,2005.504 - 509.
  • 6Douglas Eck. Finding long-timescale musical slructure with an autocorrelation phase matrix [J]. Music Perception, 2006, 24 (2) : 167 - 176.
  • 7C E Shannon, (1948). A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27:379 - 423,623 - 656.
  • 8Roger B Dannenberg. An intelligent multi-track audio editor [A]. In Proceedings of The 2007 International Computer Music Conference[C]. San Francisco:International Computer Music Association, 2007,2: 89 - 94.
  • 9Casey M,Veltkamp R V,Goto M,et al.Content-based music in- formation retrieval:current directions and future challenges[J].Pro- ceedings of the IEEE,2008,96(4):668-696.
  • 10Shao Xi.Content-based music classification summarization and retrieval[D].Singapore:National University of Singapore,2006.

共引文献5

同被引文献12

  • 1Michael A, Casey RV. Content-based music information retrieval: Current directions and future challenges [ J ]. Proceedings of the IEEE, 2008, 96 (4): 668-696.
  • 2Toh CC, Zhang B, Wang Y. Multiple-feature fusion based on- set detection for solo singing voice [C] //9th ISMIR, 2008.
  • 3Zhou R, Mattavdli M, Zoia G. Music onset detection based on re- sonator time frequency image [J]. IEEE Transactions on Audio, Speech, and Lan__geProcessing, 2008, 16 (8): 1685-1695.
  • 4Schorkhuber, Christian, Anssi Klapuri. Constant-Q transform toolbox for music processing [C] //7th Sound and Music Com- puting Conference, 2010.
  • 5Muller M, Ewert S. Towards timbre-invariant audio features for harmony-based music [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18 (3):649-662.
  • 6Emiya V, Badeau R, David I3. Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18 (6).- 1643-1654.
  • 7MIREX [R/OL]. http://www, music-ir, org/mirex/wiki/MIREX _HOME, 2014.
  • 8Onset Detection Database[DB/OL]. http://grfia, dlsi. ua. es/ cm/proj ects/prosemus/database, php,2014.
  • 9王跃,谢磊,杨玉莲.基于自适应白化的音乐节拍实时跟踪算法[J].计算机应用研究,2009,26(5):1676-1678. 被引量:1
  • 10宋黎明,李明,颜永红.谐波显著度的基频提取方法[J].声学学报,2015,40(2):294-299. 被引量:5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部