期刊文献+

基于关键帧的人体行为识别方法 被引量:5

Human behavior recognition based on key frame
在线阅读 下载PDF
导出
摘要 提出了一种基于关键帧的人体行为识别方法。利用关于弧长的方向函数对人体形状进行描述以及通过形状空间中两点间的测地线距离对形状间的相似性进行度量,提取视频序列中的关键帧,通过模板匹配的方法实现对行为的识别。对CASIA单人行为数据库和Weismann数据库进行测试,实验结果表明该方法具有较高的识别率。 This paper addresses an approach which uses the direction function on the arc length to describe the body shape and the geodesic distance between any two points in the shape spaces to measure the similarity of shapes.It extracts key frames in the video sequence and recognizes the human action based on the template matching approach.The experimental results on the CASIA single behavior database and the Weismann database show that the method has a high recognition rate.
出处 《计算机工程与应用》 CSCD 2013年第18期134-137,141,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.11176056)
关键词 行为识别 关键帧检测 相似性度量 action recognition key-frame detection similarity measure
  • 相关文献

参考文献19

  • 1Ronald P.A survey on vision-based human action recognition[J].Image and Vision Computing,2010,28(6):976-990.
  • 2Kellokumpu V,Pietikainen M,Heikkila J.Human activity recognition using sequences of postures[C]//IAPR Conf Machine Vision Applications,2005.
  • 3黄飞跃,徐光祐.视角无关的动作识别[J].软件学报,2008,19(7):1623-1634. 被引量:14
  • 4Green R D,Guan Ling.Quantifying and recognizing human movement patterns from monocular video images-part I:a new framework for modeling human motion[J].IEEE Trans on Circuits and Systems for Video Technology,2004,14(2).
  • 5Efros A,Berg A,Mori G,et al.Recognizing action at a distance[C]//Proc Int’l Conf Computer Vision,2003:726-733.
  • 6Harris C,Stephens M.A combined corner and edge detector[C]//Alvey Vision Conference,1988:147-152.
  • 7Laptev I.On space-time interest points[J].Int’l J Computer Vision,2005,64(2/3):107-123.
  • 8印勇,张晶,王建东.人体行为识别的改进Radon变换方法[J].计算机工程与应用,2012,48(11):196-200. 被引量:2
  • 9Abdelkader M F,Abd-Almageed W,Srivastava A,et al.Silhouette-based gesture and action recognition via modeling trajectories on Riemannian shape manifolds[J].Computer Vision and Image Understanding,2011,115:439-455.
  • 10Klassen E,Srivastava A,Mio W,et al.Analysis of planar shapes using geodesic paths on shape spaces[J].IEEE Trans on Pattern Anal Mach Intell,2004,26(4).

二级参考文献61

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:80
  • 3Aggarwal J. K, Cai Q. Human motion analysis:A review[J]. Computer Vision and Image Understanding, 1999, 73 ( 3 ) : 428- 440.
  • 4Gavrila D. M. The visual analysis of human movement :A survey [J]. Computer Vision and Image Understanding, 1999,73 ( 1 ) : 82-98.
  • 5Bashir F I, Khokhar A A, Schonfeld D. Object trajectory based activity classification and recognition using hidden Markov models[J]. IEEE Trans on Image Processing, 2007,16 (7) : 1912-1919.
  • 6ZHU Guang-yu, XU Chang-sheng. Action recognition in broadcast tennis video[A]. Proc of the 18th International Conference on Pattern Recognition[C]. N J: IEEE,2006. 251-254.
  • 7Chert H S,Chen H T,Chen Y W,et al. Human action recognition using star skeleton [A]. Proc of the 4th ACM International Workshop on Video Surveillance and Sensor Networks[C]. NY:AOM,2006. 179-]82.
  • 8HOU Ye, GUO Bao-long Human motion detection by using graph cuts[J]. Journal of Optoelectronics · Laser, 2007, 18 (6) :725-728.
  • 9Salmon J P, Debled-Rennesson I, Wendling L. A new method to detect arcs and segments from curvature profiles[A]. Proc of the 18th International Conference on Pattern Recognition (ICPR'06) [C]. IEEE,2006. 387-390.
  • 10Fujiyoshi H,Lipton A. Real-time human motion analysis by image skeletonization[A]. In, Proceedings of IEEE Workshop on Applications of Computer Vision[C]. NJ:IEEE, 1998. 15-21.

共引文献68

同被引文献47

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:80
  • 2王陈阳,周明全,耿国华.基于自适应背景模型运动目标检测[J].计算机技术与发展,2007,17(4):21-23. 被引量:20
  • 3侯叶,郭宝龙.基于图切割的人体运动检测[J].光电子.激光,2007,18(6):725-728. 被引量:11
  • 4衣治安,吕曼.基于多分类支持向量机的入侵检测方法[J].计算机工程,2007,33(15):167-169. 被引量:7
  • 5Qian H M,Mao Y B,Xiang W B,et al.Recognition of human activities using SVM multi-class classifier[J].Pattern Recognition Letters,2010,31(2):100-111.
  • 6Khan Z A,Sohn W.Abnormal human activity recognition system based on R-transform and kernel discriminant technique for elderly home care[J].Consumer Electronics,2011,58(4):1843-1850.
  • 7Palaniappan A,Bhargavi R,Vaidehi V.Abnormal human activity recognition using SVM based approach[C]//International Conference on Recent Trends in Information Technology,2012:97-102.
  • 8Wei H X,He J,Tan J D.Layered hidden Markov models for real-time daily activity monitoring using body sensor networks[J].Knowledge and Information Systems,2011,29(2):479-494.
  • 9Banos O,Damas M,Pomares H,et al.Daily living activity recognition based on statistical feature quality group selection[J].Expert Systems with Applications,2012,39(9):8013-8021.
  • 10Vignolo L D,Milone D H,Scharcanski J.Feature selection for face recognition based on multi-objective evolutionary wrappers[J].Expert Systems with Applications,2013,40(13):5077-5084.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部