期刊文献+

一种基于改进高斯过程隐变量模型的多角度人脸识别算法 被引量:5

A Multi-angle Face Recognition Algorithm Based on Modified Gaussian Process Latent Variable Mode
在线阅读 下载PDF
导出
摘要 针对传统谱算法在人脸识别中的局限,该文提出一种基于改进高斯过程隐变量模型(GP-LVM)的多角度人脸识别算法。首先,通过高斯过程(GP)对人脸流形建立概率模型,得到高斯过程隐变量模型(GP-LVM);其次,分析GP-LVM得到共有信息(shared information)和独有信息(private information),利用概率最大化与拉格朗日乘子法得到参照矩阵和参照值;最后,实现多角度人脸识别。选取Yale,JAFFE,FERET,CMU-PIE 4类数据集进行对比实验,实验结果表明:该文提出的算法可以有效地识别多角度人脸,针对无角度人脸识别也具有良好的效果。 The traditional spectrum algorithms are limited in face recognition issue. For its characteristics of issue, a novel multi-angle face recognition method based on modified Gaussian Process Latent Variable Mode (GP-LVM) is proposed. Firstly, the probabilistic model of face manifold is established with the Gaussian Process (GP), and the GP-LVM can be gotten. Secondly, the shared information and private information can be gotten by analyzing the GP-LVM. Thereafter, the reference matrices and the reference values are calculated with maximum probability and Lagrange algorithm. Finally, the multi-angle face recognition can be achieved. The four classes of data sets are selected as the experimental data, which consist of Yale, JAFFE, FERET and CMU-PIE. The experiment results show that the proposed method not only has a great effect to recognize multi-angle face, but it can be applied to no angle face recognition.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2033-2039,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61272253) 国家住建部科技计划项目(2010-K9-22)资助课题
关键词 人脸识别 高斯过程 谱算法 隐变量模型 共有信息 独有信息 Face recognition Gaussian Process (GP) Spectrum algorithm Latent Variable Mode (LVM) Sharedinformation Private information
  • 相关文献

参考文献15

  • 1Gentle J E, H~rdle W K, and Mori Y C. Handbook of Computational Statistics: Concepts and Methods[M]. Second Edition, Germany: Springer Press, 2012: 883-926.
  • 2Cruz-Mota J, Bogdanova I, Pluier B, et al.. Scale invariant feature transform on the sphere: theory and applications[J]. The International Journal of Computer Vision, 2012, 98(2): 217-241.
  • 3Dalai N and Triggs B. Histogranls of oriented gradients for human detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886-893.
  • 4Rencher A C and Christensen W F. Methods of Multivariate AnalysisIM]. Third Edition, Hoboken: Wiley Press, 2012: 405-433.
  • 5Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 6Cevikalp H and Triggs B. Face recognition based on image sets[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2567-2573.
  • 7Liu Xiu-wen, Srivastava A, and Gallivan K. Optimal linear representations of images for object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 662-666.
  • 8Wright J, Yang A Y, Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 9Hamm J and Lee D D. Grassmann discriminant analysis: a unifying view on subspace-based learning[C]. Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 376-383.
  • 10Wang Tie-sheng and Shi Peng-fei. Kernel G distances and discriminant analysis for face recognition from image sets[J]. Pattern Recognition Letters, 2009, 30(13), 1161-1165.

同被引文献39

  • 1田巍,庄镇泉.基于HSV色彩空间的自适应肤色检测[J].计算机工程与应用,2004,40(14):81-85. 被引量:37
  • 2郑峰,杨新.基于Adaboost算法的人脸检测[J].计算机仿真,2005,22(9):167-169. 被引量:14
  • 3高旭升,张学智,姬春英.彩色图像中人脸检测的研究[J].自动化技术与应用,2005,24(10):54-56. 被引量:2
  • 4Xanthopoulos P, Pardalos PM, Trafalis TB. Linear Discriminant Analysis. Robust Data Mining. Springer New York, 2013: 27-33.
  • 5Yah S, Xu D, Zhang B, et al. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51.
  • 6Roweis S, Sau L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(22): 2323- 2326.
  • 7Lin H, Hong Y, Shu J. Some relations between the eigenvalues of adjacency, laplacian and signless laplacian matrix of a graph. Graphs and Combinatorics, 2013: 1-9.
  • 8Campbell MC, Markham J, Flores H, et al. Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology, 2013,81(6): 520-527.
  • 9Asafu-Adjei JK, Sampson AIL Sweet RA, et al. Adjusting for matching and covariates in linear discriminant analysis. Biostatistics, 2013, 14(4): 779-791.
  • 10Zhang WQ, Yang HZ. A method of multiple soft-sensors based on SLPP. Journal of East China University of Science and Technology, 2012, 38(6): 724-728.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部