期刊文献+

基于AAM提取几何特征的人脸识别算法 被引量:11

Face Recognition Algorithm Based on Geometric Characteristics Extracted by AAM
原文传递
导出
摘要 针对人脸识别中由于环境光照、人脸姿态和表情等变化带来的识别困难,提出一种基于主动外观模型(Active Appearance Model,简称AAM)提取几何特征的人脸识别算法。本算法利用主动外观模型对人脸图像特征点进行准确的提取和定位;根据提取的特征点构造人脸几何特征向量并进行归一化,并根据几何特征向量之间的相似度简单快速地对人脸图像进行自动分类和识别。实验表明,本算法在主动外观模型基础上选取的几何特征向量具有尺寸、旋转和位移不变性,利用这些几何特征向量对人脸图像进行识别,可以有效避免人脸识别中常见的光照、姿态和表情影响并提高识别效率。 Due to the difficulty of face recognition caused by ambient light, face pose and expression change, a face recognition algorithm based on geometric characteristics extracted by Active Appearance Model (AAM) was proposed. This algorithm first made use of AAM to precisely extract and locate a set of feature pointsfrom the face images. Then, geometric characteristic vectors of faces were constructed and normalized. Finally, the face images were classified and recognized rapidly according to the similarity of characteristic vectors in different images. Experimental results demonstrate that the geometric characteristic vectors built on the basis of AAM have the strength of scalar, rotational and translational invariance. Using these vectors, the proposed algorithm can not only keep a good robustness to the variations of illumination, pose and face expression, but also improve recognition efficiency.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第10期2374-2380,共7页 Journal of System Simulation
基金 国家自然科学基金(60903064) 山东省自然科学基金(ZR2011FQ003)
关键词 AAM 特征点 几何特征向量 人脸识别 AAM (Active Appearance Model) feature points geometric characteristic vector face recognition
  • 相关文献

参考文献20

  • 1Chellappa R, Sinha P, Phillips P J. Face recognition by computers and humans [J]. Computer (S0018-9162), 2010, 43(2): 46-55.
  • 2Hua G, Yang M H, Learned-Miller E, et al. Introduction to the special section on real-world face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2011, 33(10): 1921-1924.
  • 3Zhao W, CheUappa R, Phillips P J, et al. Face recognition: A literature survey[J]. ACM Computing Surveys (CSUR) (S0360-0300), 2003, 35(4): 399-458.
  • 4Wu Y M, Wang H W, Lu Y L, et al. Facial feature extraction and applications: A review [M]// Intelligent Information and Database Systems. Germany: Springer Berlin Heidelberg, 2012: 228-238.
  • 5Edwards G J, Cootes T F, Taylor C J. Face recognition using active appearance models [M]// Computer Vision-ECCV'98. Germany: Springer Berlin Heidelberg, 1998: 581-595.
  • 6Guillaumin M, Mensink T, Verbeek J, et al. Face recognition from caption-based supervision [J]. International Journal of Computer Vision (S0249-0803), 2012, 96(1): 64-82.
  • 7Imran M, Noushath S, Abdesselam A, et al. Efficient multi-algorithmic approaches for face recognition using subspace methods [C]//2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA). USA: IEEE, 2013: 1-6.
  • 8Ballihi L, Ben Amor B, Daoudi M, et al. Boosting 3D-Geometric Feanares for Efficient Face Recognition and Gender Classification [J]. IEEE Transactions on Information Forensics and Security (S1556-6013), 2012, 7(6): 1766 - 1779.
  • 9Ramesha K, Raja K B, Venugopal K R, et al. Feature extraction based face recognition, gender and age classification [J].International Journal on Computer Science & Engineering (S0975-3397), 2010, 2 (1S): 14-23.
  • 10Choudhary K, Goel N. A review on face recognition techniques [C]// International Conference on Communication and Electronics System Design. Jaipur, India: SPIE, International Society for Optics and Photonics, 2013: 87601E-87601E-10.

同被引文献82

  • 1陈绵书,陈贺新,桑爱军.计算机人脸识别技术综述[J].吉林大学学报(信息科学版),2003,21(S1):101-109. 被引量:18
  • 2陈悦,陈超美,刘则渊,胡志刚,王贤文.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. 被引量:8930
  • 3郑宇杰,杨静宇,吴小俊,於东军.基于独立成分分析和模糊支持向量机的人脸识别方法[J].系统仿真学报,2005,17(7):1768-1770. 被引量:13
  • 4孙涛,谷士文,费耀平.基于PCA算法的人脸识别方法研究比较[J].现代电子技术,2007,30(1):112-114. 被引量:14
  • 5陈熙,赵晓萍,范松青.人体面部测量与分析[J].南华大学学报(医学版),2007,35(4):518-520. 被引量:12
  • 6CHAIT Y, RIZON M, WOO S S, et al. Facial features for template matching based face recognition[J], American Journal of Applied Sciences. 2009,6(11) : 1897-1901.
  • 7LU J, ZHAO J W,CAO F L. Extended feed forward neural networks with random weights for face recognition[J]. Neuro- computing,2014(136) :96-102.
  • 8ANSUMAN M, TUSAR K M, PANKAJ, et al. Human recognition system for outdoor videos using Hidden Markov model [J]. International Journal of Electronics and Communications,2013,08(011 ):227-236. DOI: dx. doi. org/10. 1016/j. aeue. 2013.08. 011.
  • 9SRINIVASAN A. A Framework for face recognition using adaptive binning and adaboost techniques[J]. International Journal of Multimedia & Its Applications,2014,3(1) :76-88. DOI:10. 5121/ijma. 2011. 3107.
  • 10RAJU A S, UDAYASHANKARA V. Biometric person authentica- tion: a review [ C]// Proceedings of the 2014 Intemational Confer- ence on Contemporary Computing and Informatics. Piseataway, NJ: IEEE, 2014:575-580.

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部