期刊文献+

一种多样性增强的推荐列表选择算法 被引量:4

Recommendation list selection algorithm with diversity enhancement
在线阅读 下载PDF
导出
摘要 针对传统的推荐算法过于强调推荐的精准度导致推荐列表的同质化现象突出的问题,提出了一种新的推荐列表选择算法DivEnhance。首先给出了推荐列表的多样性和效用值的定义;然后将其建模为一个带约束的整数规划问题来求解,通过一个参数的调整,可以实现多样性和精准度的灵活控制。实验结果表明,该算法可以在一定精准度损失的条件下,大幅提高最终推荐列表的多样性。特别地,在推荐一些新颖性较高的内容上,该算法相对于传统的推荐算法具有较大的优势。 Traditional recommendation algorithms overemphasize recommendation accuracy and homogenization phenomenon of recommendation lists is prominent. In view of this problem,this paper proposed a new recommendation selection algorithm called DivEnhance. First,it gave definition of recommender lists' diversity and utility, and then constructed a constrained integer pro- gramming model to solve the problem, through a parameter adjustment,it could realize the flexible control of diversity and accu- racy. Experiment resuhs demonstrate that the proposed algorithm can enhance the diversity of recommendation lists at the cost of a certain accuracy reduction. Specially, it outperformed other recommendation algorithms in recommending some novel items.
出处 《计算机应用研究》 CSCD 北大核心 2013年第9期2591-2593,2609,共4页 Application Research of Computers
基金 国家“863”计划资助项目(2011AA01A102) 国家自然科学基金资助项目(60972082)
关键词 Top-N推荐 多样性 精准度 新颖性 Top-N recommendation diversity accuracy novelty
  • 相关文献

参考文献10

  • 1MCNEE S M, RIEDL J, KONSTAN J A. Being accurate is not enough : how accuracy metrics have hurt recommender systems[ C ]//Proc of CHI' 06 Extended Abstracts on Human Factors in Computing Sys- tems. New York :ACM Press,2006 : 1097-1101.
  • 2ADOMAVICIUS G, KWON Y. Improving aggregate recommendation diversity using ranking-based techniques [ J ]. IEEE Trans on Know- ledge and Data Engineering,2012,24(5):896 -911.
  • 3ZIEGLER C, MCNEE S M, KONSTAN J A, et aL Improving recom- mendation lists through topic diversification [ C ]//Proc of the 14th In- ternational Conference on World Wide Web. New York:ACM Press, 2005:22- 32.
  • 4JAMBOR T,WANG Jun. Optimizing multiple objectives in collabora- tive filtering[ C]//Proc of the 4th ACM Conference on Recommender Systems. New York : ACM Press ,2010:55-62.
  • 5VARGAS S, CASTELLS P. Rank and relevance in novelty and diversi- ty metrics for recommender systems[ C ]//Proc of the 5th ACM Con- ference on ReeSys. New York : ACM Press ,2011 : 109-116.
  • 6SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collabora-tive filtering recommendation algorithms[ C]//Proc of the 10th Inter- national Conference on World Wide Web. New York: ACM Press, 2001 : 285- 295.
  • 7张爱君,秦新强,龚春琼.求解0-1二次规划问题的迭代禁忌搜索算法[J].计算机工程,2012,38(1):140-142. 被引量:5
  • 8MILLER B, ALBERT I, LAM S, et al. Movielens unplugged: expe- riences with an occasionally connected recommder system [ C ]//Proc of the 8th International Conference on Intelligence User Interfaces. New York : ACM Press ,2003:263-266.
  • 9CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-N recommendation tasks [ C ]//Proc of the 4th ACM Conference on RecSys. New York:ACM Press, 2011:39-46.
  • 10HERLOCKER J L, KONSTAN J A, TERVEEN L, et al. Evaluating collaborative filtering recommender systems [ J]. ACM Trans on In- formation Systems ,2004,22 ( 1 ) :5-53.

二级参考文献8

  • 1廖飞雄,马良.图着色问题的启发式搜索蚂蚁算法[J].计算机工程,2007,33(16):191-192. 被引量:16
  • 2Kochenberger G A, Glover E Alidaee B, et al. An Unified Modeling and Solution Framework for Combinatorial Optimi- zation Problems[J]. OR Spectrum, 2004, 26(2): 229-241.
  • 3Merz P, Katayama K. Memetic Algorithms for the Unconstrained Binary Quadratic Programming Problem[J]. BioSystems, 2004, 78(1-3): 99-118.
  • 4Lodi A, Allemand K, Liebling T M. An Evolutionary Heuristic for Quadratic 0-1 Programming[J]. European Journal of Operational Research, 1999, 119(3): 662-670.
  • 5Beasley J E. Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem[D]. London, UK: Imperial College, 1998.
  • 6Endre B, Hammer P L, Gabriel T. Local Search Heuristics for Quadratic Unconstrained Binary Optimization[J]. Journal of Heuristics, 2007, 13(2): 99-132.
  • 7Glover F, Laguna M. Tabu Search[M]. Boston, USA: Kluwer Academic Publishers, 1997.
  • 8Glover F, Hao Junkao. Efficient Evaluations for Solving Large 0-1 Unconstrained Quadratic Optimization Problems[J]. International Journal of Metaheufistics, 2010, 1(1): 3-10.

共引文献4

同被引文献14

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部