期刊文献+

一种基于Dual-GPU的三次卷积插值并行算法研究 被引量:4

Research on Cubic Convolution Interpolation Parallel Algorithm Based on Dual-GPU
在线阅读 下载PDF
导出
摘要 针对传统三次卷积插值算法实现遥感图像放大在运算规模、计算速度等方面的不足,结合GPU的高性能计算优势,提出一种基于Dual-GPU(Graphic Processing Unit)的三次卷积插值并行算法(CCPA),即应用GPU的高性能计算技术将传统的三次卷积插值算法进行并行化处理,将图像的像素点个数平均分配给每个线程块,每个线程针对一个像素,线程在GPU中同时执行,以提高其插值效率。实验结果表明,该算法在保持放大后图像质量的同时,速度得到提升,随着图像分辨率的增大,该算法的优势更明显,在分辨率10240*10240的情况下,用GPU处理的速度比CPU提升了97.7%,用双GPU处理的速度是单GPU的2倍,并且在对放大遥感图像的质量和实时性均要求较高如地震、洪水等灾害的情况下,该算法具有实用价值。 The traditional cubic convolution algorithm has to confront with the problems of large operational scale and slow efficiency,when it is used to realize the remote sensing image magnification. In this paper, GPU, as a burgeoning high performance computing technique, was proposed to make parallel processing of the traditional cubic convolution, which we call the Cubic Convolution Parallel Algorithm(CCPA). This algorithm that divides the pixels points equally to each block, guarantees each pixel point is executed by a thread and threads are executed simultaneously in GPU, impro- ving the interpolation efficiency greatly. The experimental results show that compared with the traditional cubic convo- lution algorithm, this algorithm not only increases the calculation speed, but also achieves high quality image after zoo- ming. Meanwhile, with the growth of image resolution, the advantages of the algorithm become more and more obvious, for instance,to the image of 10240 ~ 10240 resolutions, the speed processed by GPU is 97. 7% higher than that by CPU,and the speed processed by double-GPU is twice than the speed processed by single GPU. Moreover, this algo- rithm also has profound practical value for remote sensing image processing under some emergency situations such as earthquakes, floods and other disasters, with the characteristic of good image quality and real-time mechanism.
出处 《计算机科学》 CSCD 北大核心 2013年第8期24-27,33,共5页 Computer Science
基金 国家重大科技专项高分辨率对地观测系统项目(E0101/1010/01/10 E0104/1112/XT-002) 国家自然科学基金(60973126) 国防科技工业民用专项科研技术研究项目(科工技2010A03A1000)资助
关键词 三次卷积 CUDA GPU 高性能计算 Cubic convolution CUDA GPU High-performance computing
  • 相关文献

参考文献7

二级参考文献63

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2Li Xin,Michael T.New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,10(10) : 1521-1527.
  • 3Chen Chinghan,Hsieh Shenghsien.A novel image interpolator based on probabilistic neural network with shapeness/smoothness adaptation[M]//LNCS 3497:Advances in Neural Network-ISNN 2005. Springe Berlin/Heidelberg, 2005 : 698-706.
  • 4Nuno-Maganda,Afias-Estrada.Real-time FPGA-based architecture for bicubic interpolation:An application for digital image scaling[C]// International Conference on Reconfigurable Computing and FPGAs, 2005.
  • 5Uthaichana P,Leelarasmee E.A pipelined bilinear interpolation for real time video image expansion[C]//TENCON 2004.2004 IEEE Region 10 Conference,Volume D,2004:21-24.
  • 6Gribbon K T,Bailey D G.A novel approach to real-time bilinear interpolation[C]//Proceedings of the Second IEEE International Workshop on Electronic Design,Test and Applications(DELTA'04),2004: 126-131.
  • 7陈良,高成敏.快速离散化双线性插值算法[J].计算机工程与设计,2007,28(15):3787-3790. 被引量:26
  • 8张舒,褚艳利.GPU高性能计算之CUDA[M].北京:中国水利水电出版社.200910:213.
  • 9Aho, E., Vanne, J., Hamalainen, T.D., Kuusilinna, K., 2007. Configurable implementation of parallel memory based real-time video downscaler. Microprocess. Microsyst., 31(5):283-292. [doi:10.1016/j.micpro.2006.09.003].
  • 10Arandiga, F., Donat, R., Mulet, P., 2003. Adaptive interpola- tion of images. Signal Process., 83(2):459-464. [doi:10. 1016IS0165-1684(02)00445-0].

共引文献138

同被引文献16

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部