期刊文献+

一种基于PPI的高光谱数据矿物信息自动提取方法 被引量:8

Automated mineral information extraction based on PPI algorithm for hyperspectral imagery
原文传递
导出
摘要 本文通过分析PPI算法后续处理存在的问题,引入最大距离法(MD)实现基于PPI的端元自动分类,并将获得的未知端元在波谱库中遍历以匹配最佳地类,最终完成基于PPI端元的矿物信息的自动提取。实验采用美国内华达州Cuprite地区的机载AVIRIS和我国东天山地区的星载Hyperion高光谱遥感数据,利用IDL编程实现矿物信息的自动提取,通过对实验结果的比较分析,验证了本文方法的有效性和实用性。 The Maximum Distance (MD) algorithm and traversal of spectrum library were adopted in this study to solve the further processing of PPI, which usually needs manual selection of endmembers. The PPI endmembers were selected with MD and identified automatically by comparing their spectrum with the samples in spectrum library. Finally, an Airborne Visible/Infrared Imaging Spec- trometer (AVIRIS) hyperspectral image of Cuprite, Nevada, USA and a Hyperion image of East Tianshan, Xinjiang, China were used to validate the methods carried out by the IDL programs, including the MNF, PPI, MD, Traverse, SAM algorithm. The results of two experiments were analyzed, which indicated that the methods mentioned herein are valid and useful.
出处 《测绘科学》 CSCD 北大核心 2013年第4期138-141,共4页 Science of Surveying and Mapping
基金 国家863计划重点项目(2008AA121103) 中国地质大调查项目(1212010816033)
关键词 高光谱遥感 像元纯净指数 最大距离法 端元提取 矿物信息提取 hyperspectral remote sensing pixel purity index maximum distance endmember extraction mineral information ex-traction
  • 相关文献

参考文献17

  • 1ChaudhryF, Wu CH-CH, Liu W-m, et ",d. Pixel purity index-basedalgorithms for endmemberextraction from hy- perspectralimagery[J]. Transworld Research Network37/ 661 (2), FortP. O., Trivandrum-695 023, Kerala, Indi-a ,2006.
  • 2Bateson A, Curtiss B. A method for manual endmember selectionand spectral unmixing [ J ]. Remote Sensing of Environment, 1996,55:229-243.
  • 3Winter ME. Comparison of approaches fordetermining end-members in hyperspectral data [ J ]. IEEE Aerospace ConferenceProceedings ,2000 ( 3 ) :305-313.
  • 4Nascimento, J M P, Dias, J M B. Vertex component a- nalysis: afast algorithm to unmixhyperspectral data. IEEE Transactions onGeoscience and Remote Sensing [ J ]. 2005,43:898-910.
  • 5Bowles J H, Palmadesso PJ, Antoniades J A, et al. Use of filtervectors in hyperspectral data analysis [ C ]//Stro- jnik, M. ; Andresen, B. F., (Eds.), InfraredSpace- borne Remote Sensing, Proceedings of SPIE. San Diego, USA, 1995 : 148-157.
  • 6Neville R A, Staenz K, Szeredi T,et al. Automatic end- member extraction from hyperspectral data for mineralex- ploration, Fourth international airborne remote sensing conference andexhibition [ C ]//21st Canadian symposium on remote sensing. Ottawa, Ontario, Canada : Natural Re- sources Canada, 1999.
  • 7Bemmn M, Kiiveri H, Lagerstrom R, et al. ICE: A sta- tistical approach to identifying endmembers inhyperspec-tral images [ C]//IEEE Transactions on Geoscience and RemoteSensing, 2004,42: 2085-2095.
  • 8Plaza A, Martinez P, Perez R, et al. Spatial/spectra.lend- member extraction by multidimensional morphological op- erations[ C]//IEEE Transactions on Geoscience and Re- mote Sensing, 2002,40:2025-2041.
  • 9Roggea DM, Rivard B, Zhang J, et al. Integration of spa- tial-spectral informationfor the improved extraction of end- members [ J ]. Remote Sensing of Enviroment, 2007, 110 : 287-303.
  • 10吴波,汪小钦,张良培.端元光谱自动提取的总体最小二乘迭代分解[J].武汉大学学报(信息科学版),2008,33(5):457-460. 被引量:7

二级参考文献17

共引文献85

同被引文献81

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部