期刊文献+

基于哈希表结构和图像分割的快速图像标注

Fast image annotation based on hash table structure and image segmentation
在线阅读 下载PDF
导出
摘要 为了快速、准确地标注大型图像数据集中的图片,提出了一种利用图像分割和基于kNN(k-nearest neighbor)图的半监督学习来标注图像的算法.该算法先将图像分割为若干个局部区域,使用局部敏感的哈希表来构建图像局部区域的kNN图,并基于图像局部区域的kNN图来构建原始图像的kNN图,利用基于图的半监督标签传递算法来标注未标注的图像.在具有269 648张图像的大型图像数据集NUS-WIDE和具有5 000张图像的Corel数据集上的实验结果表明,该算法能获得较快的标注速度和标注精度. In order to annotate the images in large image datasets quickly and accurately, an algorithm using image segmentation and kNN (k-nearest neighbor) graph-based semi-supervised learning for image annotation was proposed. The images were segmented into several local regions with the proposed algorithm, and the kNN graph of local regions was established with the locally sensitive hash table. In addition, the kNN graph of original images was constructed based on the kNN graph of local regions of images. The graph-based semi-supervised label propagation algorithm was used to annotate the images which were not annotated. The experimental results of both large image dataset NUS-WIDE with 269 648 images and Corel dataset with 5 000 images show that the proposed algorithm can obtain higher annotation speed and annotation accuracy.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2013年第4期438-444,共7页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(60973105) 国家863先进制造领域重点项目(2008AA04A120)
关键词 图像分割 半监督学习 图像标注 哈希表 kNN图 标签传递 聚类算法 方向梯度直方图 image segmentation semi-supervised learning image annotation hash table kNN graph label propagation clustering algorithm histogram of oriented gradient
  • 相关文献

参考文献16

  • 1Rubin D L, Mongkolwat P, Kleper V, et al. Channin DS:medical imaging on the semantic web:annotation and inaage markup [C ]//Proceedings of 2008 AAAI Spring Symposium. Series, Semantic Scientific Knowl- edge Integration. California,USA,2008:93 -98.
  • 2Li J,Wang J Z. Automatic linguistic indexing of pic- tures by a statistical modeling approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2003,25 ( 9 ) : 1075 - 1088.
  • 3Chen G, Song Y, Wang F, el al. Semi-supervised multi-label learning by solving a sylvester equation [C]//SIAM International Conference on Data Mi- ning. Atlanta, USA ,2008:410 - 419.
  • 4Duygulu P,Barnard K, de Freitas N, et al. Object re- cognition as machine translation:learning a lexicon for a fixed image vocabulary [ C]//Proceedings of 7thEuropean Conference on Computer Vision. Copenha- gen, Denmark, 2002 : 97 - 112.
  • 5Shi J B, Jitendra M. Normalized cuts and image seg- mentation[ C ]//IEEE Conference on Computer Vi- sion and Pattern Recognition. Puerto Rico, USA, 1997:731 -737.
  • 6Mori Y ,Takahashi H ,Oka R. Image-to-word transfor- mation based on dividing and vector quantizing images with words [ C ]//Proceedings of the First Internation- al Workshop on Multimedia Intelligent Storage and Retrie'-al Management. Orlando, USA, 1999: 79g - 806.
  • 7Qi G J ,Hua X S, Rui Y, et al. Correlative multi-label video annotation [ C]//Proceedings of the 15th ACM International Conference on Multimedia. Augsburg, Germany ,2007 : 17 - 26.
  • 8Liu J,Li M, Liu Q, et al. Image annotation via graph learning [J]. Pattern Recognition,2009,42 (2) :218 - 228.
  • 9潘崇,朱红斌.改进k-means算法在图像标注和检索中的应用[J].计算机工程与应用,2010,46(4):183-185. 被引量:8
  • 10鲍泓,徐光美,冯松鹤,须德.自动图像标注技术研究进展[J].计算机科学,2011,38(7):35-40. 被引量:22

二级参考文献45

  • 1陈世亮,李战怀,袁柳.一种基于区域特征关联的图像语义标注方法[J].计算机工程与应用,2007,43(2):53-56. 被引量:3
  • 2路晶,马少平.基于概念索引的图像自动标注[J].计算机研究与发展,2007,44(3):452-459. 被引量:10
  • 3Li J,Wang J Z.Real-Time computerized annotation of picture[C]// Proc of the ACM Int'l Conf on Muhimedia.Sanata Barbara:ACM Press, 2006: 911-920.
  • 4Wang Lei,Liu Li, Khan L.Automatic image annotation and retrieval using subspace clustering algorithm[C]//Proceedings of the 2nd ACM International Workshop on Multimedia Databases,2004: 263-274.
  • 5Mezaris V,Kompatsiaris L,Strintzis M G.A framework for the efficient segmentation of large format color image[C]//Proc IEEE ICIP, Rochester,NY USA,September 2002.
  • 6Wang Lei,Khan L.Object boundary detection for ontology-based image classification[C]//Third International Workshop on Multimedia Data Mining, Edmonton, Alberta, Canada, July 2002.
  • 7Cusano C, Ciocca G, Sehettini R. Image annotation using SVM [C] ff Proc. of Int. SPIE Conf. on Imaging IV. San Jose, CA, USA, Feb. 2004 : 330-338.
  • 8Lu Zhi-wu, Horace H S I, He Qi-zhen. Context-based multi-label image annotation [C]//Proceeding of the ACM International Conference on Image and Video Retrieval. Santorini, Fira, Greece, July 2009.
  • 9Maron O, Lozano-Perez T. Multiple-instance learning for natural scene elassification[C] // Proe. of Int. Conf. on Machine Learning (ICML'98). Madison,Wisconsin,USA,July 1998..341-349.
  • 10Yang C, Dong M, Fotouhi F. Region-based image annotation through multiple instance learning[C] //Proc, of ACM Conf. on Multimedia (ACM MM'05). Singapore,Nov. 2005:435 438.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部