期刊文献+

基于改进滚动时域优化策略的动态调度方法 被引量:35

Dynamic Schedule Method Based on Improved Rolling Time Domain Optimization Strategy
在线阅读 下载PDF
导出
摘要 通过考虑带有并行机的Job Shop调度过程中设备故障对生产的影响,以最大完工时间和任务提前/拖期时间加权最小为目标建立数学模型。基于滚动时域优化基本框架,设计改进的事件和周期混合驱动的重调度机制。改进的事件驱动机制能过滤掉不必要的重调度,周期驱动机制能跟踪系统的变化,二者结合充分发挥两类驱动机制各自的优势。针对基本蚁群算法(Ant colony system algorithm,ACS)搜索时间长、易陷入局部最优解的缺点,引入精英蚂蚁策略和最大最小蚂蚁机制,设计改进蚁群系统算法(Improved ant colony system algorithm,IACS)。通过与ACS、遗传算法(Genetic algorithm,GA)的对比试验验证了IACS算法的优越性。该方法作为离散制造车间生产调度系统的组成部分在上海某军工企业生产车间实施,用实际生产数据验证动态调度方法的有效性。 Analyzed the impact of machine breakdowns in job shop schedule problem with parallel machines, a mathematical model with minimizing the weighted value of makespan and early due date as optimization goal is established. Based on the basic framework of the rolling time domain optimization, a hybrid driven schedule mechanism combining events and cycle is designed. Improved event driven mechanism filters out unnecessary scheduling, meanwhile, cycle driving mechanism can track system changes. The combination can give full play to their strengths. Due to the long searching time and easy falling into local optimum solution of Ant colony algorithm(ACS), an improved ant colony system algorithm(IACS) mixing elite ant strategy and max-min ant mechanism is designed. The contrast experiment with ACS and genetic algorithm(GA) verified the superiority of IACS. The dynamic scheduling method is implemented as a constituent part of the scheduling system in discrete manufacturing workshop of a military enterprise in Shanghai, and the validity is verified by the production data.
作者 刘国宝 张洁
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第14期182-190,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(60934008) 国家高技术研究发展计划(863计划 2012AA040907)资助项目
关键词 并行机 混合驱动 重调度 蚁群算法 Parallel machines Hybrid driven Dynamic schedule Ant colony algorithm
  • 相关文献

参考文献4

二级参考文献24

  • 1蔡良伟,李霞,张基宏.用带蚁群搜索的多种群遗传算法求解作业车间调度问题[J].信息与控制,2005,34(5):553-556. 被引量:11
  • 2谷峰,陈华平,卢冰原,古春生.粒子群算法在柔性工作车间调度中的应用[J].系统工程,2005,23(9):20-23. 被引量:15
  • 3张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 4[1]Blazewicz J, Leastra J K, Kan A H G R. Scheduling subject to resource constraints:classification and complexity. Discrete Applied Mathematics, 1983, 5:11~24
  • 5[2]Downlatshahi S, Ashok M S. Design optimization in concurrent engineering:a team approach. Concurrent Engineering-Research and Applications, 1997, 5:145~154
  • 6[3]Peter B L, Feng Liu, Bryan M. Scheduling of design projects with uncertain number of iterations. European Journal of Operational Research, 1999, 113:575~592
  • 7[4]Todd D S, Sen P. Distributed task scheduling and allocation using genetic algorithms. Computers & Industrial Engineering, 1999, 37:47~50
  • 8[5]Nicoletti S, Nicolo F. A concurrent engineering decision model:Management of the project activities information flows. Production Economics, 1998, 54:115~127
  • 9P Bruker,R Schlie.Job-Shop Scheduling with Multi-Purpose Machines[J].Computing,1990,45(4):369-375.
  • 10I Kacem,S Hsmmadi,P Borne.Approach by Localization and MultiObjective Evolutionary Optimization for Flexible Job Shop Scheduling Problems[C].IEEE Transaction on Systems,Man and Cybernetics,Part C,2002.32(1):1-13.

共引文献103

同被引文献324

引证文献35

二级引证文献314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部