期刊文献+

索赔准备金评估的非线性分层增长曲线模型研究 被引量:6

Non-linear Hierarchical Growth Curve Models for Claims Reserving
在线阅读 下载PDF
导出
摘要 考虑损失流量三角形中同一事故年的损失随时间反复观测的纵向特征,将损失流量三角形视为分层数据,结合损失进展的增长曲线,提出了关于索赔准备金评估的两种非线性分层增长曲线模型,并应用R软件对精算实务中的实例给出了数值分析。提出的非线性分层模型为考虑多个事故年的损失进展建模提供了一种自然灵活的框架,使得建立的模型易于理解,同时在分层建模中纳入了增长曲线,也有效避免了尾部进展因子的选定问题。 The longitudinal characteristics of repeated measurements over time of loss for a given accident year in the loss runoff triangles has been considered in the paper. And the loss run- off triangles is regarded as hierarchical data. Then combined with the growth curves of loss development process, two non-linear hierarchical growth curve models of claims reserving are proposed in the paper, the first is called the hierarchical models based on loss development factors, and the second is called the hierarchical models based on Cape Cod assumption. Some numerical illustrations from actuarial practice are provided using R software. The proposed non-linear hierarchical growth curve models provide a natural and flexible framework to model loss development across multiple accident years. The method of non-linear growth curves together with hierarchical modeling techniques not only allows one to build models that are easy to understand, but also incorporates the growth curves into hierarchical modeling so as to effectively avoid the choices of tail development factors.
出处 《财经理论与实践》 CSSCI 北大核心 2013年第4期23-29,共7页 The Theory and Practice of Finance and Economics
基金 中央高校基本科研业务费专项资金(NKZXTD1101) 国家自然科学基金面上项目(71271121)
关键词 分层模型 索赔准备金评估 纵向数据 信度理论增长曲线 Hierarchical models Claims reserving Longitudinal data Growth curve
  • 相关文献

参考文献12

  • 1Barnett, G. , Zehnwirth, B. Best estimates for reserves [J]. Proceedings of CAS, 2000,87 : 245- 321.
  • 2England, P. D. , Verrall, R. J. Stochastic claims reserving in general insurance [J]. British Actuarial Journal, 2002,8 (3) : 443-518.
  • 3England, P. D. , Verrall R. J. Predictive distributions of out- standing liabilities in general insurance [J]. Annals of Actuarial Science, 2007, 1(2): 221-270.
  • 4Clark, D. R. LDF curve fitting and stochastic loss reserving: a maximum likelihood approach [J]. Casualty Actuarial Society Forum, Fall,2003, 41-91.
  • 5Meyers, G. Estimating predictive distributions for loss reserve models [J]. Variance, 2007, 1(2) : 248-272.
  • 6Bjorkwal[, S. , Hossier, O. , Ohtsson, E. , Verrall, R. A gen- eralized linear model with smoothing effects for claims reserving [J] Insurance.. Mathematics and Economics, 2011,49 (1), 27 -37.
  • 7Pinheiro, J. C. , Bates, D. M. Mixed-effects models in s and s- plus [M]. Springer-Verlag, New York, 2000.
  • 8Raudenbush, S. W. , Bryk, A. S. Hierarchical linear models:applications and data analysis method [M]. Second Edition, SAGE Publications, 2002.
  • 9Gelman, A. , Hill, J. Data analysis using regression and multi- level/hierarchical models[M]. Cambridge University Press, New York, 2007.
  • 10Mack, T. Distribution-free calculation of the standard error of chain ladder reserve estimates [J] ASTIN Bulletin, 1993,23 (2):213-225.

二级参考文献11

  • 1Nelder J A, Wedderburn R W M. generalized linear models[J]. Journal of the Royal Statistical Society, Series A, 1972, 135 (3): 370-384.
  • 2Feldblum S, Brosius E. The minimum bias procedures: a practitioner's guide[J]. Casualty Actuarial Society Forum, Fall 2002, 591-683.
  • 3Schmidt K D, Wtinsche. A Chain ladder, marginal sum and maximum iikelihood estimation[J]. BI? tter DGVM 1998, 23: 267-277.
  • 4Renshaw A E, Verrall R J. A Stochastic model underlying the chain-ladder technique[J]. British Actuarial Journal, 1998, 4 (4) : 903-923.
  • 5England P D. Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"[J]. Insurance:Mathematics and Economics, 2002, 31: 461-466.
  • 6England P D, Verrall R J. Predictive distributions of outstanding liabilities in general insurance[J]. Annuals of Actuarial Science, 2007, 1(2): 221-270.
  • 7Wtithrich M V, Merz M. Stochastic claims reserving methods in insurance[M]. John Wiley & Sons, Ltd. 2008.
  • 8张连增.呆痪赔款准备金评估的随机性模型与方法[M].北京:中国金融出版社,2008.
  • 9Taylor G, Ashe F R. Second moments of estimates of outstanding claim[J]. Journal of Econometrics, 1983, 23 : 37-61.
  • 10Hachemeister C A, Stanard J N. IBNR claims count estimation with static lag functions[J]. Astin Colloquium 1975, Portlmao, Portugal.

共引文献10

同被引文献155

  • 1毛泽春,吕立新.用双广义线性模型预测非寿险未决赔款准备金[J].统计研究,2005,22(8):52-55. 被引量:12
  • 2孟生旺.未决赔款准备金评估模型的比较研究[J].统计与信息论坛,2007,22(5):5-9. 被引量:7
  • 3Coyne F J. Loss Reserving: A Fresh Look: The Difficulty in Setting Reserves and the Risk of Insolvency are Just Two of the Many Reasons to Revisit Reserving[J ]. Best's Review,2008,109(5):96-97.
  • 4England P D, Verrall R J.Stoehastie Claims Reserving in General Insurance [ J ]. British Actuarial Journal, 2002,8 (3) : 443- 518.
  • 5De Alba E.Bayesian Estimation of Outstanding Claims Reserves[ J ].North American Actuarial Journal, 2002,6(4) : 1-20.
  • 6Ntzoufras I,Dellaportas P.Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty [J].NorthAmerican Actuarial Journal, 2002, 6 ( 1 ) : 113-128.
  • 7Meyers G. Estimating Predictive Distributions for Loss Reserve Models [ J J. Variance, 2007,1(. 2) : 248-272.
  • 8De Alba E, Nieto-Barajas L E.Claims Reserving: A Correlated Bayesian Model[J ]. Insurance:Mathematics and Economics,2008,43(3):368-376.
  • 9Antonio K, Beirlant J.Issues in Claims Reserving and Credibility: A Semiparametric Approach with Mixed Models [J].Journal of Risk and Insurance, 2008, 75 (3) : 643-676.
  • 10Meyers G.Stochastic Loss Reserving with the Collective Risk Model[ J ]. Variance, 2009,3 (2) : 239-269.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部