期刊文献+

区间信度环境下基于偏好熵的随机格序排列方法 被引量:1

Approach for Random Lattice Order Ranking Based on Preference Entropy Under Interval Belief Degree Circumstance
在线阅读 下载PDF
导出
摘要 针对偏好优劣关系的信度为区间值的决策偏好系统,运用熵理论提出了一种基于区间值分布偏好向量的决策分析方法。首先,将决策者对方案的偏好描述由:优于、劣于、等价和不可比这四种关系拓广为优于、劣于、等价、无法比较但有上确界、无法比较但有下确界、无法比较且有上确界又下确界、不可比七种偏好关系,并结合区间证据的概念和性质给出了决策偏好系统的区间值分布偏好向量与相对熵的概念、性质。然后,构建了基于偏好熵的证据推理非线性优化模型,通过求解模型,并结合优先原则和集结规则将个人偏好集结成群体偏好,给出了该决策方法的具体步骤,举例说明了方法的可行性。 A method of random lattice order decision analysis based on interval-valued distribution preference vec- tor by entropy theory is proposed, focused on decision preference system with preference relations' belief degree described by interval-value. First, the preference characterization of decision makers is extended from four varie- ty relations to seven variety preference relations, combined with the concept and property of interval evidence, the concept and property of interval-valued distribution preference vector and relative entropy on the lattice order preference system are given. Then the ER nonlinear optimization model based on preference entropy is estab- lished, the individual preferences are aggregated by applying the priority rules and intersection rule, and the spe- cific steps of the decision making are qiven. The feasibility and effectiveness of the approach proposed in this paper are illustrated with a numerical example.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2013年第3期21-29,共9页 Operations Research and Management Science
基金 国家自然科学基金资助项目(71071102 70771093)
关键词 群决策 格序偏好 区间信度 偏好熵 非线性优化模型 group decision-making lattice order preference interval belief degree preference entropy nonlin-ear optimization
  • 相关文献

参考文献40

  • 1Chuu S J. Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with muhiple fuzzy information[ J]. Computers & Industrial Engineering, 2009, 57 (3) : 1033-1042.
  • 2Ma LiChing. Visualizing preferences on spheres for group decisions based on multiplieative preference relations[ J]. European Journal of Operational Research, 2010, 203 (1): 176-184.
  • 3Cilen YenLiang, Cheng LiChen. An approach to group ranking decisions in a dynamic environalent [ J], Decision Support Systems, 2010, 48(4) : 622-634.
  • 4Eugene D Hahn. Judgmental consistency and consensus in stochastic multicriteria decision making[J]. Expert Systems with Applications, 2010, 37(5) : 3784-3791.
  • 5Xu Zeshui. A method based on distance measure for interval-valued intuitlonistic fuzzy group decision making[ J]. Information Sciences, 2010, 180(1): 181-190.
  • 6Park K S, Jeong I. How to treat strict preference information in multie-riteria decision analysis[ J]. Journal of the Operational Research Society, 2011 , 62 ( 10 ) : 1771-1783.
  • 7Jahaushahloo G R, Zohrehbandian M, Aliuezhad A, Abbasian Naghneh S, Abbasian H, Kiani Mavi R. Finding common weights based on the D M~ preference information[ J ]. Journal of the Operational Research Society, 2011, 62(10) : 1796-1800.
  • 8Yuen K K F. opposite matrix and its cognitive prioritization operators: comparisons with pairwise reciprocal matrix and analytic prioritization operators[ J ]. Journal of the Operational Research Society, 2011, 18 (5) : 1057-1066.
  • 9Samimi Namin F, Shahriar K, Bascetin A, Ghodsypour S H. FMMSIC: a hybrid fuzzy based decision support system for MMS (in order to estimate interrelationships between criteria) [ J ]. Journal of the Operational Research Society, 2011, 4 (5) : 1022-1034.
  • 10Xu Zeshui, Chen Jian. MAGDM linear programming models with distinct uncertain preference structures[ J]. IEEE Transac- tions on Systems, Man, and Cybernetics-Part B, 2008, 38(5) : 1356-1370.

二级参考文献90

共引文献91

同被引文献36

  • 1Chuu S J. Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information[J]. Computers& Industrial Engineering, 2009, 57: 1033-1042.
  • 2Intepe G, Bozdag E, Koc T. The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach [J]. Computers & Industrial Engineering, 2013, 65(2): 277-285.
  • 3Lee Seok Kee, Cho Yoon Ho, Kim Soung Hie. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations [J]. Information Sciences , 2010, 180(11): 2142- 2155.
  • 4Chiclana F, Garcia J M T, Moral M J, et al. Statistical comparative study of different similarity measures of consensus in group decision making[J]. Information Sciences, 2013(221) : 110-123.
  • 5Guo Chunxiang. A method for aggregating group preference based on pair-wise comparison with random binary relations under interval belief structures [J]. Applied Mathematics & Information Sciences, 2012, 6(3): 869-880.
  • 6Wang Jiamin. Robust optimization analysis for multiple attribute decision making problems with imprecise information[J]. Ann Operational Research, 2012, 197:109-122.
  • 7Giuseppe M. Intensity of preference and related uncertainty in non-compensatory aggregation rules [J]. Theory Decision, 2012, 73:649-669.
  • 8Ronald R Y. On the fusion of imprecise uncertainty measures using belief structures[J]. Information Science, 2011, 181(15) :3199-3209.
  • 9Huang Bing , Guo Chunxiang, et al. Intuitionistic fuzzy multigranulation rough sets [J]. Information Sciences, 2014, 277:299-320.
  • 10Joseph R-R. Making choices with a binary relation: Relative choice axioms and transitive closures [J]. European Journal of Operational Research, 2010, 207:865-877.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部